Balogun Shuaib A, Yim Sierra S, Yom Typher, Jean Benjamin C, Losego Mark D
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332,United States.
Chem Mater. 2024 Jan 10;36(2):838-847. doi: 10.1021/acs.chemmater.3c02446. eCollection 2024 Jan 23.
This study examines the chemical reaction pathways for vapor phase infiltration (VPI) of TiCl into poly(methyl methacrylate) (PMMA). VPI is a processing method that transforms organic polymers into organic-inorganic hybrid materials with new properties of interest for microelectronic patterning, technical textiles, and chemical separations. Understanding the fundamental chemical mechanisms of the VPI process is essential for establishing approaches to design the chemical structure and properties of these hybrid materials. While prior work has suggested that TiCl infiltration into PMMA does not disrupt the polymer's carbonyl bond, a clear reaction mechanism has yet to be proposed. Here, we present a detailed X-ray photoelectron spectroscopy study that presents evidence for a concerted reaction mechanism that involves TiCl coordinating with the PMMA's ester group to dealkylate the methyl side group, creating a chloromethane byproduct and primary chemical bonds between the organic and inorganic components of the hybrid material. Additional spectroscopy, quartz crystal microbalance gravimetry, and thermophysical and chemical property measurements of this material, including solubility studies and thermal expansion measurements, provide further evidence for this chemical reaction pathway and the subsequent creation of inorganic cross-links that network these TiO-PMMA hybrid materials.
本研究考察了TiCl气相渗透(VPI)到聚甲基丙烯酸甲酯(PMMA)中的化学反应路径。VPI是一种将有机聚合物转化为有机-无机杂化材料的加工方法,这些杂化材料具有微电子图案化、工业用纺织品和化学分离等方面的新特性。了解VPI过程的基本化学机制对于建立设计这些杂化材料化学结构和性能的方法至关重要。虽然先前的研究表明TiCl渗透到PMMA中不会破坏聚合物的羰基键,但尚未提出明确的反应机制。在此,我们展示了一项详细的X射线光电子能谱研究,该研究为协同反应机制提供了证据,该机制涉及TiCl与PMMA的酯基配位,使甲基侧基脱烷基化,生成氯甲烷副产物,并在杂化材料的有机和无机成分之间形成主要化学键。对该材料进行的其他光谱分析、石英晶体微天平重量分析以及热物理和化学性质测量,包括溶解度研究和热膨胀测量,为这一化学反应路径以及随后形成使这些TiO-PMMA杂化材料网络化的无机交联提供了进一步的证据。