School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, GA 30332, USA.
Phys Chem Chem Phys. 2018 Aug 22;20(33):21506-21514. doi: 10.1039/c8cp04135k.
Vapor phase infiltration (VPI) is a new approach for transforming polymers into organic-inorganic hybrid materials with unique properties. Here, we combine experimental measurements with phenomenological theory to develop a universal strategy for measuring, modeling, and predicting the processing kinetics of VPI. We apply our approach to the well-studied VPI system of trimethylaluminum (TMA) infiltrating poly(methyl methacrylate) (PMMA) because the system undergoes both precursor-polymer diffusion and reaction. By experimentally measuring aluminum concentration profiles as a function of film depth with secondary ion mass spectrometry (SIMS) and film swelling with ellipsometry, we have extracted equilibrium solubility and effective diffusivity as a function of process temperature. Fitting these values to appropriate Van't Hoff and Arrhenius relationships, we can then extract enthalpies for precursor sorption and diffusion. We observe an abrupt mechanistic change in both the sorption and diffusion processes around 95 °C, where greater chain mobility at higher processing temperatures lead to greater reactivity between TMA and PMMA. With new understanding of this VPI process, we demonstrate precise control of inorganic infiltration depth and loading fraction into PMMA.
气相渗透(VPI)是一种将聚合物转化为具有独特性能的有机-无机杂化材料的新方法。在这里,我们将实验测量与唯象理论相结合,为 VPI 的加工动力学的测量、建模和预测开发了一种通用策略。我们将我们的方法应用于研究充分的三甲基铝(TMA)渗透聚甲基丙烯酸甲酯(PMMA)的 VPI 体系,因为该体系经历了前体-聚合物的扩散和反应。通过用二次离子质谱(SIMS)实验测量铝浓度分布作为薄膜深度的函数和用椭圆偏振术测量薄膜溶胀,我们提取了平衡溶解度和有效扩散系数作为过程温度的函数。将这些值拟合到适当的范特霍夫(Van't Hoff)和阿仑尼乌斯(Arrhenius)关系中,我们可以提取出前体吸附和扩散的焓。我们观察到在 95°C 左右吸附和扩散过程都发生了突然的机制变化,其中在较高的加工温度下链的迁移率更高,导致 TMA 和 PMMA 之间的反应性更强。通过对这种 VPI 过程的新认识,我们展示了对 PMMA 中无机渗透深度和负载分数的精确控制。