Suppr超能文献

采用非接触式主动辅助生活技术进行心率预测:一种针对老年人的智能家居方法。

Heart rate prediction with contactless active assisted living technology: a smart home approach for older adults.

作者信息

Wang Kang, Cao Shi, Kaur Jasleen, Ghafurian Moojan, Butt Zahid Ahmad, Morita Plinio

机构信息

School of Public Health Sciences, University of Waterloo, Waterloo, ON, Canada.

Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada.

出版信息

Front Artif Intell. 2024 Jan 12;6:1342427. doi: 10.3389/frai.2023.1342427. eCollection 2023.

Abstract

BACKGROUND

As global demographics shift toward an aging population, monitoring their heart rate becomes essential, a key physiological metric for cardiovascular health. Traditional methods of heart rate monitoring are often invasive, while recent advancements in Active Assisted Living provide non-invasive alternatives. This study aims to evaluate a novel heart rate prediction method that utilizes contactless smart home technology coupled with machine learning techniques for older adults.

METHODS

The study was conducted in a residential environment equipped with various contactless smart home sensors. We recruited 40 participants, each of whom was instructed to perform 23 types of predefined daily living activities across five phases. Concurrently, heart rate data were collected through Empatica E4 wristband as the benchmark. Analysis of data involved five prominent machine learning models: Support Vector Regression, K-nearest neighbor, Random Forest, Decision Tree, and Multilayer Perceptron.

RESULTS

All machine learning models achieved commendable prediction performance, with an average Mean Absolute Error of 7.329. Particularly, Random Forest model outperformed the other models, achieving a Mean Absolute Error of 6.023 and a Scatter Index value of 9.72%. The Random Forest model also showed robust capabilities in capturing the relationship between individuals' daily living activities and their corresponding heart rate responses, with the highest value of 0.782 observed during morning exercise activities. Environmental factors contribute the most to model prediction performance.

CONCLUSIONS

The utilization of the proposed non-intrusive approach enabled an innovative method to observe heart rate fluctuations during different activities. The findings of this research have significant implications for public health. By predicting heart rate based on contactless smart home technologies for individuals' daily living activities, healthcare providers and public health agencies can gain a comprehensive understanding of an individual's cardiovascular health profile. This valuable information can inform the implementation of personalized interventions, preventive measures, and lifestyle modifications to mitigate the risk of cardiovascular diseases and improve overall health outcomes.

摘要

背景

随着全球人口结构向老龄化转变,监测心率变得至关重要,心率是心血管健康的一项关键生理指标。传统的心率监测方法往往具有侵入性,而主动辅助生活领域的最新进展提供了非侵入性的替代方法。本研究旨在评估一种新颖的心率预测方法,该方法利用非接触式智能家居技术结合机器学习技术来监测老年人的心率。

方法

该研究在配备各种非接触式智能家居传感器的居住环境中进行。我们招募了40名参与者,每位参与者被要求在五个阶段中进行23种预定义的日常活动。同时,通过Empatica E4腕带收集心率数据作为基准。数据分析涉及五种主要的机器学习模型:支持向量回归、K近邻、随机森林、决策树和多层感知器。

结果

所有机器学习模型均取得了值得称赞的预测性能,平均绝对误差为7.329。特别是,随机森林模型的表现优于其他模型,平均绝对误差为6.023,散点指数值为9.72%。随机森林模型在捕捉个体日常活动与其相应心率反应之间的关系方面也表现出强大的能力,在晨练活动中观察到的最高相关系数值为0.782。环境因素对模型预测性能的贡献最大。

结论

所提出的非侵入性方法的应用为观察不同活动期间的心率波动提供了一种创新方法。本研究结果对公共卫生具有重要意义。通过基于非接触式智能家居技术预测个体日常活动中的心率,医疗保健提供者和公共卫生机构可以全面了解个体的心血管健康状况。这些有价值的信息可为实施个性化干预、预防措施和生活方式改变提供依据,以降低心血管疾病风险并改善整体健康结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b177/10811001/d41d56da0db7/frai-06-1342427-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验