Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, Mail Code 0303, La Jolla, CA, 92093-0448, USA.
Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr, Mail Code, 0448, La Jolla, CA, 92093-0448, USA.
Nat Commun. 2018 Sep 18;9(1):3800. doi: 10.1038/s41467-018-06322-x.
Predicting the stability of crystals is one of the central problems in materials science. Today, density functional theory (DFT) calculations remain comparatively expensive and scale poorly with system size. Here we show that deep neural networks utilizing just two descriptors-the Pauling electronegativity and ionic radii-can predict the DFT formation energies of CADO garnets and ABO perovskites with low mean absolute errors (MAEs) of 7-10 meV atom and 20-34 meV atom, respectively, well within the limits of DFT accuracy. Further extension to mixed garnets and perovskites with little loss in accuracy can be achieved using a binary encoding scheme, addressing a critical gap in the extension of machine-learning models from fixed stoichiometry crystals to infinite universe of mixed-species crystals. Finally, we demonstrate the potential of these models to rapidly transverse vast chemical spaces to accurately identify stable compositions, accelerating the discovery of novel materials with potentially superior properties.
预测晶体的稳定性是材料科学的核心问题之一。如今,密度泛函理论(DFT)的计算仍然相对昂贵,并且随着系统规模的增加而效率低下。在这里,我们展示了深度神经网络仅利用两个描述符——鲍林电负性和离子半径,就可以分别以低平均绝对误差(MAE)7-10 meV 原子和 20-34 meV 原子预测 CADO 石榴石和 ABO 钙钛矿的 DFT 形成能,这完全在 DFT 精度的范围内。通过使用二进制编码方案,可以进一步扩展到混合石榴石和钙钛矿,而不会损失太多准确性,从而解决了从固定化学计量晶体到混合物种晶体无限宇宙的机器学习模型扩展中的一个关键差距。最后,我们展示了这些模型在快速跨越广阔化学空间以准确识别稳定成分方面的潜力,从而加速具有潜在优异性能的新型材料的发现。