文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

二氧化硅包覆氨基功能化CoFeO铁氧体纳米颗粒处理含重金属废水的动力学及作用机制研究

Study of Kinetics and the Working Mechanism of Silica-Coated Amino-Functionalized CoFeO Ferrite Nanoparticles to Treat Wastewater for Heavy Metals.

作者信息

Saleem Muhammad Umer, Hussain Humaira, Shukrullah Shazia, Yasin Naz Muhammad, Irfan Muhammad, Rahman Saifur, Ghanim Abdulnoor Ali Jazem

机构信息

Department of Physics, University of Agriculture Faisalabad, 38040 Faisalabad, Pakistan.

Department of Chemistry, University of Okara, 56300 Okara, Pakistan.

出版信息

ACS Omega. 2024 Jan 10;9(3):3507-3524. doi: 10.1021/acsomega.3c07200. eCollection 2024 Jan 23.


DOI:10.1021/acsomega.3c07200
PMID:38284017
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10809704/
Abstract

This study used a simple coprecipitation method to produce pristine, silica-coated, and amino-functionalized CoFeO nanoadsorbents. Amino-functionalization was done to increase the active surface area and metal ion removal efficiency. Both pristine and functionalized adsorbents were employed to recover Pb(II), Zn(II), and Cu(II) ions from wastewater. The adsorption tests were performed by varying the initial concentration of metal ions and contact time at a fixed pH of 6.5. Atomic adsorption spectroscopy was utilized to detect the proportion of metals removed from water. Additionally, the pseudo-first-order, pseudo-second-order, Freundlich, and Langmuir models were employed to compute the kinetic and isothermic data from metal ion adsorption onto the adsorbents. The amino-functionalized adsorbent showed adsorption capacities of 277.008, 254.453, and 258.398 mg/g for Cu(II), Pb(II), and Zn(II) ions, respectively. According to the adsorption results, the Langmuir isotherm and the pseudo-second-order model best suit the data. The best fitting of the pseudo-second-order model with the data indicates that coordinative interactions between amino groups and metal ions are responsible for chemisorption. The metal ions bind with -NH groups on the adsorbent surface through chelate bonds. Chelate bonds are extremely strong and stable, indicating the effectiveness of the CoFeO@SiO-NH adsorbent in adsorbing heavy-metal ions. The tested adsorbent exhibited good performance, batter stability, and good reusable values around 77, 81, and 76% for Cu(II), Pb(II), and Zn(II) ions, respectively, after five adsorption cycles.

摘要

本研究采用简单共沉淀法制备了原始的、二氧化硅包覆的和氨基功能化的CoFeO纳米吸附剂。进行氨基功能化是为了增加活性表面积和提高金属离子去除效率。原始吸附剂和功能化吸附剂均用于从废水中回收Pb(II)、Zn(II)和Cu(II)离子。吸附试验通过在固定pH值6.5下改变金属离子的初始浓度和接触时间来进行。利用原子吸收光谱法检测从水中去除的金属比例。此外,采用准一级、准二级、Freundlich和Langmuir模型来计算金属离子吸附到吸附剂上的动力学和等温数据。氨基功能化吸附剂对Cu(II)、Pb(II)和Zn(II)离子的吸附容量分别为277.008、254.453和258.398 mg/g。根据吸附结果,Langmuir等温线和准二级模型最适合这些数据。准二级模型与数据的最佳拟合表明氨基与金属离子之间的配位相互作用是化学吸附的原因。金属离子通过螯合键与吸附剂表面的-NH基团结合。螯合键非常强且稳定,表明CoFeO@SiO-NH吸附剂在吸附重金属离子方面的有效性。经过五个吸附循环后,测试的吸附剂对Cu(II)、Pb(II)和Zn(II)离子分别表现出良好的性能、较好的稳定性和良好的可重复使用价值,分别约为77%、81%和76%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/10b757365aae/ao3c07200_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/4e0cbb185bc7/ao3c07200_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/2f05c523fccc/ao3c07200_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/ddf759d0f191/ao3c07200_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/680c3198d670/ao3c07200_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/55c9fca62136/ao3c07200_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/3721fe6f96bc/ao3c07200_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/3a298b2248d5/ao3c07200_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/2e6ad76041b7/ao3c07200_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/af07bf5a06d7/ao3c07200_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/be12ac29651b/ao3c07200_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/4570c7c3f26d/ao3c07200_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/044d5c8809d4/ao3c07200_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/41fd4b7c070d/ao3c07200_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/aafe60303e0b/ao3c07200_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/10b757365aae/ao3c07200_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/4e0cbb185bc7/ao3c07200_0018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/2f05c523fccc/ao3c07200_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/ddf759d0f191/ao3c07200_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/680c3198d670/ao3c07200_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/55c9fca62136/ao3c07200_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/3721fe6f96bc/ao3c07200_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/3a298b2248d5/ao3c07200_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/2e6ad76041b7/ao3c07200_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/af07bf5a06d7/ao3c07200_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/be12ac29651b/ao3c07200_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/4570c7c3f26d/ao3c07200_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/044d5c8809d4/ao3c07200_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/41fd4b7c070d/ao3c07200_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/aafe60303e0b/ao3c07200_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71fa/10809704/10b757365aae/ao3c07200_0014.jpg

相似文献

[1]
Study of Kinetics and the Working Mechanism of Silica-Coated Amino-Functionalized CoFeO Ferrite Nanoparticles to Treat Wastewater for Heavy Metals.

ACS Omega. 2024-1-10

[2]
Kinetics and Adsorption Isotherms of Amine-Functionalized Magnesium Ferrite Produced Using Sol-Gel Method for Treatment of Heavy Metals in Wastewater.

Materials (Basel). 2022-6-5

[3]
New strategy to enhance heavy metal ions removal from synthetic wastewater by mercapto-functionalized hydrous manganese oxide via adsorption and membrane separation.

Environ Sci Pollut Res Int. 2021-10

[4]
Mercury Ion Selective Adsorption from Aqueous Solution Using Amino-Functionalized Magnetic FeO/SiO Nanocomposite.

Materials (Basel). 2024-8-28

[5]
Adsorption kinetics and isotherms of binary metal ion aqueous solution using untreated venus shell.

Heliyon. 2022-6-2

[6]
Facile preparation of amine -functionalized corn husk derived activated carbon for effective removal of selected heavy metals from battery recycling wastewater.

Heliyon. 2022-5-23

[7]
Surface Functionalization of Graphene Oxide with Hyperbranched Polyamide-Amine and Microcrystalline Cellulose for Efficient Adsorption of Heavy Metal Ions.

ACS Omega. 2022-3-23

[8]
Kinetics, thermodynamics, equilibrium, surface modelling, and atomic absorption analysis of selective Cu(ii) removal from aqueous solutions and rivers water using silica-2-(pyridin-2-ylmethoxy)ethan-1-ol hybrid material.

RSC Adv. 2021-12-22

[9]
Statistically Analyzed Heavy Metal Removal Efficiency of Silica-Coated CuMgFeO Magnetic Adsorbent for Wastewater Treatment.

ACS Omega. 2023-12-8

[10]
Efficacious adsorption of divalent nickel ions over sodium alginate-g-poly(acrylamide)/hydrolyzed Luffa cylindrica-CoFeO bionanocomposite hydrogel.

Int J Biol Macromol. 2024-1

引用本文的文献

[1]
Mercury Ion Selective Adsorption from Aqueous Solution Using Amino-Functionalized Magnetic FeO/SiO Nanocomposite.

Materials (Basel). 2024-8-28

本文引用的文献

[1]
Recent progress of covalent organic frameworks membranes: Design, synthesis, and application in water treatment.

Eco Environ Health. 2023-7-13

[2]
Functional Carbon Capsules Supporting Ruthenium Nanoclusters for Efficient Electrocatalytic TcO /ReO Removal from Acidic and Alkaline Nuclear Wastes.

Adv Sci (Weinh). 2023-10

[3]
Modulating Anion Nanotraps via Halogenation for High-Efficiency TcO/ReO Removal under Wide-Ranging pH Conditions.

Environ Sci Technol. 2023-7-25

[4]
Kinetics and Adsorption Isotherms of Amine-Functionalized Magnesium Ferrite Produced Using Sol-Gel Method for Treatment of Heavy Metals in Wastewater.

Materials (Basel). 2022-6-5

[5]
A critical and recent developments on adsorption technique for removal of heavy metals from wastewater-A review.

Chemosphere. 2022-9

[6]
Diverse Surface Chemistry of Cobalt Ferrite Nanoparticles to Optimize Copper(II) Removal from Aqueous Media.

Materials (Basel). 2020-3-27

[7]
Removal of Mercury (II) by EDTA-Functionalized Magnetic CoFeO@SiO Nanomaterial with Core-Shell Structure.

Nanomaterials (Basel). 2019-10-29

[8]
Nanomaterials for the Removal of Heavy Metals from Wastewater.

Nanomaterials (Basel). 2019-3-12

[9]
Heavy metals in food crops: Health risks, fate, mechanisms, and management.

Environ Int. 2019-2-8

[10]
Adsorption of Cu(II) and Zn(II) Ions from Aqueous Solution by Gel/PVA-Modified Super-Paramagnetic Iron Oxide Nanoparticles.

Molecules. 2018-11-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索