文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Kinetics and Adsorption Isotherms of Amine-Functionalized Magnesium Ferrite Produced Using Sol-Gel Method for Treatment of Heavy Metals in Wastewater.

作者信息

Irfan Muhammad, Zaheer Fareeda, Hussain Humaira, Naz Muhammad Yasin, Shukrullah Shazia, Legutko Stanislaw, Mahnashi Mater H, Alsaiari Mabkhoot A, Ghanim Abdulnour Ali Jazem, Rahman Saifur, Alshorman Omar, Alkahtani Fahad Salem, Khan Mohammad K A, Kruszelnicka Izabela, Ginter-Kramarczyk Dobrochna

机构信息

Electrical Engineering Department, College of Engineering, Najran University Saudi Arabia, Najran 11001, Saudi Arabia.

Department of Physics, University of Agriculture, Faisalabad 38040, Pakistan.

出版信息

Materials (Basel). 2022 Jun 5;15(11):4009. doi: 10.3390/ma15114009.


DOI:10.3390/ma15114009
PMID:35683307
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9181868/
Abstract

This study is focused on the kinetics and adsorption isotherms of amine-functionalized magnesium ferrite (MgFeO) for treating the heavy metals in wastewater. A sol-gel route was adopted to produce MgFeO nanoparticles. The surfaces of the MgFeO nanoparticles were functionalized using primary amine (ethanolamine). The surface morphology, phase formation, and functionality of the MgFeO nano-adsorbents were studied using the SEM, UV-visible, FTIR, and TGA techniques. The characterized nanoparticles were tested on their ability to adsorb the Pb, Cu, and Zn ions from the wastewater. The kinetic parameters and adsorption isotherms for the adsorption of the metal ions by the amine-functionalized MgFeO were obtained using the pseudo-first-order, pseudo-second-order, Langmuir, and Freundlich models. The pseudo-second order and Langmuir models best described the adsorption kinetics and isotherms, implying strong chemisorption via the formation of coordinative bonds between the amine groups and metal ions. The Langmuir equation revealed the highest adsorption capacity of 0.7 mmol/g for the amine-functionalized MgFeO nano-adsorbents. The adsorption capacity of the nanoadsorbent also changed with the calcination temperature. The MgFeO sample, calcined at 500 °C, removed the most of the Pb (73%), Cu (59%), and Zn (62%) ions from the water.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/3090b8462326/materials-15-04009-g018a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/0a96ff812701/materials-15-04009-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/bffc37508381/materials-15-04009-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/ed95a577034d/materials-15-04009-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/c360a3083071/materials-15-04009-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/3fae37c72fb3/materials-15-04009-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/0c6a680715b6/materials-15-04009-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/63e91c194c18/materials-15-04009-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/270ad344aae0/materials-15-04009-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/39c18ae1d9a1/materials-15-04009-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/6cce719f9d09/materials-15-04009-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/bce211f92d13/materials-15-04009-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/b8e7d2f41146/materials-15-04009-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/1f76e3838a5d/materials-15-04009-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/fd1b8d346d49/materials-15-04009-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/c27a205fa522/materials-15-04009-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/dbaa321c7021/materials-15-04009-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/67fba04de5c4/materials-15-04009-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/7c7a762375a1/materials-15-04009-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/3090b8462326/materials-15-04009-g018a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/0a96ff812701/materials-15-04009-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/bffc37508381/materials-15-04009-g001a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/ed95a577034d/materials-15-04009-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/c360a3083071/materials-15-04009-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/3fae37c72fb3/materials-15-04009-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/0c6a680715b6/materials-15-04009-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/63e91c194c18/materials-15-04009-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/270ad344aae0/materials-15-04009-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/39c18ae1d9a1/materials-15-04009-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/6cce719f9d09/materials-15-04009-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/bce211f92d13/materials-15-04009-g010a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/b8e7d2f41146/materials-15-04009-g011a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/1f76e3838a5d/materials-15-04009-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/fd1b8d346d49/materials-15-04009-g013a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/c27a205fa522/materials-15-04009-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/dbaa321c7021/materials-15-04009-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/67fba04de5c4/materials-15-04009-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/7c7a762375a1/materials-15-04009-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a5a/9181868/3090b8462326/materials-15-04009-g018a.jpg

相似文献

[1]
Kinetics and Adsorption Isotherms of Amine-Functionalized Magnesium Ferrite Produced Using Sol-Gel Method for Treatment of Heavy Metals in Wastewater.

Materials (Basel). 2022-6-5

[2]
Study of Kinetics and the Working Mechanism of Silica-Coated Amino-Functionalized CoFeO Ferrite Nanoparticles to Treat Wastewater for Heavy Metals.

ACS Omega. 2024-1-10

[3]
Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies.

Environ Pollut. 2019-5-31

[4]
Facile preparation of amine -functionalized corn husk derived activated carbon for effective removal of selected heavy metals from battery recycling wastewater.

Heliyon. 2022-5-23

[5]
Magnesium ferrite-nitrogen-doped graphene oxide nanocomposite: effective adsorptive removal of lead(II) and arsenic(III).

Environ Sci Pollut Res Int. 2022-7

[6]
Using amine-functionalized magnetite hollow nanospheres (AMHNs) as adsorbents for heavy metal ions.

Water Sci Technol. 2017-7

[7]
Magnetic magnesium ferrite-doped multi-walled carbon nanotubes: an advanced treatment of chromium-containing wastewater.

Environ Sci Pollut Res Int. 2020-2-8

[8]
Surface Functionalization of Graphene Oxide with Hyperbranched Polyamide-Amine and Microcrystalline Cellulose for Efficient Adsorption of Heavy Metal Ions.

ACS Omega. 2022-3-23

[9]
[One-step Preparation of Lanthanum-Magnesium Ferrite and Its Phosphate Adsorption Capacity in Aqueous Solutions].

Huan Jing Ke Xue. 2021-3-8

[10]
Enhanced fluoride removal over MgFeO-chitosan-CaAl nanohybrid: Response surface optimization, kinetic and isotherm study.

Int J Biol Macromol. 2020-1-16

引用本文的文献

[1]
Development of manganese ferrite coated with Prussian blue as an efficient contrast agent for applications in magnetic resonance imaging.

Sci Rep. 2025-4-23

[2]
Study of Kinetics and the Working Mechanism of Silica-Coated Amino-Functionalized CoFeO Ferrite Nanoparticles to Treat Wastewater for Heavy Metals.

ACS Omega. 2024-1-10

本文引用的文献

[1]
Thermochemical Conversion of Waste Glass and Mollusk Shells into an Absorbent Material for Separation of Direct Blue 15 Azo Dye from Industrial Wastewater.

ACS Omega. 2020-7-13

[2]
Effective Removal of Pb(II) from Aqueous Media by a New Design of Cu-Mg Binary Ferrite.

ACS Omega. 2020-3-24

[3]
Adsorption kinetic models: Physical meanings, applications, and solving methods.

J Hazard Mater. 2020-1-25

[4]
Removal of heavy metals from water sources in the developing world using low-cost materials: A review.

Chemosphere. 2019-5-3

[5]
Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment?

Front Plant Sci. 2018-10-16

[6]
An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure.

Sci Rep. 2018-1-30

[7]
Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III).

Sci Total Environ. 2017-11-11

[8]
Fabrication of Stable and Regenerable Amine Functionalized Magnetic Nanoparticles as a Potential Material for Pt(IV) Recovery from Acidic Solutions.

ACS Appl Mater Interfaces. 2017-5-30

[9]
Comparative and competitive adsorption of Pb(II) and Cu(II) using tetraethylenepentamine modified chitosan/CoFeO particles.

J Hazard Mater. 2016-12-21

[10]
Removal of Cu (II) and Pb (II) from Aqueous Solution using engineered Iron Oxide Nanoparticles.

Microchem J. 2016-3-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索