Suppr超能文献

通过机器学习预测金属-配体配合物的稳定常数以设计具有最佳金属离子选择性的配体。

Prediction of stability constants of metal-ligand complexes by machine learning for the design of ligands with optimal metal ion selectivity.

作者信息

Zahariev Federico, Ash Tamalika, Karunaratne Erandika, Stender Erin, Gordon Mark S, Windus Theresa L, Pérez García Marilú

机构信息

Ames National Laboratory, Ames, Iowa 50011, USA; Critical Materials Innovation Hub, Ames, Iowa 50011, USA; and Iowa State University, Ames, Iowa 50011, USA.

出版信息

J Chem Phys. 2024 Jan 28;160(4). doi: 10.1063/5.0176000.

Abstract

The new LOGKPREDICT program integrates HostDesigner molecular design software with the machine learning (ML) program Chemprop. By supplying HostDesigner with predicted log K values, LOGKPREDICT enhances the computer-aided molecular design process by ranking ligands directly by metal-ligand binding strength. Harnessing reliable experimental data from a historic National Institute of Standards and Technology (NIST) database and data from the International Union of Pure and Applied Chemistry (IUPAC), we train message passing neural net algorithms. The multi-metal NIST-based ML model has a root mean square error (RMSE) of 0.629 ± 0.044 (R2 of 0.960 ± 0.006), while two versions of lanthanide-only IUPAC-based ML models have, respectively, RMSE of 0.764 ± 0.073 (R2 of 0.976 ± 0.005) and 0.757 ± 0.071 (R2 of 0.959 ± 0.007). For relative log K predictions on an out-of-sample set of six ligands, demonstrating metal ion selectivity, the RMSE value reaches a commendably low 0.25. We showcase the use of LOGKPREDICT in identifying ligands with high selectivity for lanthanides in aqueous solutions, a finding supported by recent experimental evidence. We also predict new ligands yet to be verified experimentally. Therefore, our ML models implemented through LOGKPREDICT and interfaced with the ligand design software HostDesigner pave the way for designing new ligands with predetermined selectivity for competing metal ions in an aqueous solution.

摘要

新的LOGKPREDICT程序将HostDesigner分子设计软件与机器学习(ML)程序Chemprop集成在一起。通过向HostDesigner提供预测的log K值,LOGKPREDICT根据金属-配体结合强度直接对配体进行排名,从而增强了计算机辅助分子设计过程。利用来自美国国家标准与技术研究院(NIST)历史数据库的可靠实验数据以及国际纯粹与应用化学联合会(IUPAC)的数据,我们训练了消息传递神经网络算法。基于NIST的多金属ML模型的均方根误差(RMSE)为0.629±0.044(R2为0.960±0.006),而基于IUPAC的仅镧系元素的两个版本的ML模型的RMSE分别为0.764±0.073(R2为0.976±0.005)和0.757±0.071(R2为0.959±0.007)。对于一组六个配体的样本外集的相对log K预测,证明了金属离子选择性,RMSE值低至0.25,令人称赞。我们展示了LOGKPREDICT在识别水溶液中对镧系元素具有高选择性的配体方面的应用,这一发现得到了最近实验证据的支持。我们还预测了尚未经过实验验证的新配体。因此,我们通过LOGKPREDICT实现并与配体设计软件HostDesigner接口的ML模型为设计在水溶液中对竞争性金属离子具有预定选择性的新配体铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验