Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
Abdom Radiol (NY). 2024 Apr;49(4):1020-1030. doi: 10.1007/s00261-023-04157-9. Epub 2024 Jan 29.
To assess the predictive value of radiomics for surgical decision-making in neonatal necrotizing enterocolitis (NEC) when abdominal radiographs (ARs) do not suggest an absolute surgical indication for free pneumoperitoneum.
In this retrospective study, we finally included 171 newborns with NEC and obtained their ARs and clinical data. The dataset was randomly divided into a training set (70%) and a test set (30%). We developed machine learning models for predicting surgical treatment using clinical features and radiomic features, respectively, and combined these features to build joint models. We assessed predictive performance of the different models by receiver operating characteristic curve (ROC) analysis and compared area under curve (AUC) using the Delong test. Decision curve analysis (DCA) was used to assess the potential clinical benefit of the models to patients.
There was no significant difference in AUC between the clinical model and the four radiomic models (P > 0.05). The XGBoost joint model had better predictive efficacy and stability (AUC, training set: 0.988, test set: 0.959). Its AUC in the test set was significantly higher than that of the clinical model (P < 0.05). DCA showed that the XGBoost joint model achieved higher net clinical benefit compared to the clinical model in the threshold probability range (0.2-0.6).
Radiomic features based on AR are objective and reproducible. The joint model combining radiomic features and clinical signs has good surgical predictive efficacy and may be an important method to help primary neonatal surgeons assess the surgical risk of NEC neonates.
当腹部 X 线(AR)不提示绝对手术指征时,评估放射组学对新生儿坏死性小肠结肠炎(NEC)手术决策的预测价值。
在这项回顾性研究中,我们最终纳入了 171 例 NEC 新生儿,并获得了他们的 AR 和临床数据。数据集被随机分为训练集(70%)和测试集(30%)。我们分别使用临床特征和放射组学特征开发了用于预测手术治疗的机器学习模型,并将这些特征结合起来构建联合模型。我们通过接收者操作特征曲线(ROC)分析评估了不同模型的预测性能,并使用 Delong 检验比较了曲线下面积(AUC)。决策曲线分析(DCA)用于评估模型对患者的潜在临床获益。
临床模型和四个放射组学模型之间的 AUC 没有显著差异(P>0.05)。XGBoost 联合模型具有更好的预测效果和稳定性(AUC,训练集:0.988,测试集:0.959)。其在测试集中的 AUC 明显高于临床模型(P<0.05)。DCA 显示,在阈值概率范围内(0.2-0.6),XGBoost 联合模型与临床模型相比,获得了更高的净临床获益。
基于 AR 的放射组学特征是客观和可重复的。结合放射组学特征和临床体征的联合模型具有良好的手术预测效果,可能是帮助初级新生儿外科医生评估 NEC 新生儿手术风险的重要方法。