Suppr超能文献

基于机器学习的围产期因素预测极低出生体重儿手术性坏死性小肠结肠炎的分析:一项全国性队列研究。

Machine learning-based analysis for prediction of surgical necrotizing enterocolitis in very low birth weight infants using perinatal factors: a nationwide cohort study.

机构信息

Department of Pediatrics, Hanyang University College of Medicine, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.

Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.

出版信息

Eur J Pediatr. 2024 Jun;183(6):2743-2751. doi: 10.1007/s00431-024-05505-7. Epub 2024 Mar 30.

Abstract

Early prediction of surgical necrotizing enterocolitis (sNEC) in preterm infants is important. However, owing to the complexity of the disease, identifying infants with NEC at a high risk for surgical intervention is difficult. We developed a machine learning (ML) algorithm to predict sNEC using perinatal factors obtained from the national cohort registry of very low birth weight (VLBW) infants. Data were collected from the medical records of 16,385 VLBW infants registered in the Korean Neonatal Network (KNN). Infants who underwent surgical intervention were identified with sNEC, and infants who received medical treatment, with medical NEC (mNEC). We used 38 variables, including maternal, prenatal, and postnatal factors that were obtained within 1 week of birth, for training. A total of 1085 patients had NEC (654 with sNEC and 431 with mNEC). VLBW infants showed a higher incidence of sNEC at a lower gestational age (GA) (p < 0.001). Our proposed ensemble model showed an area under the receiver operating characteristic curve of 0.721 for sNEC prediction.    Conclusion: Proposed ensemble model may help predict which infants with NEC are likely to develop sNEC. Through early prediction and prompt intervention, prognosis of sNEC may be improved. What is Known: • Machine learning (ML)-based techniques have been employed in NEC research for prediction, diagnosis, and prognosis, with promising outcomes. • While most studies have utilized abdominal radiographs and clinical manifestations of NEC as data sources, and have demonstrated their usefulness, they may prove weak in terms of early prediction. What is New: • We analyzed the perinatal factors of VLBW infants acquired within 7 days of birth and used ML-based analysis to identify which infants with NEC are vulnerable to clinical deterioration and at high risk for surgical intervention using nationwide cohort data.

摘要

早期预测早产儿外科坏死性小肠结肠炎(sNEC)很重要。然而,由于疾病的复杂性,确定需要外科干预的 NEC 高危婴儿具有挑战性。我们开发了一种机器学习(ML)算法,使用来自极低出生体重(VLBW)婴儿全国队列注册的围产期因素预测 sNEC。数据来自韩国新生儿网络(KNN)登记的 16385 名 VLBW 婴儿的病历中收集。接受外科干预的婴儿被确定为患有 sNEC,接受治疗的婴儿被确定为患有医学 NEC(mNEC)。我们使用了 38 个变量,包括在出生后 1 周内获得的母亲、产前和产后因素,用于训练。共有 1085 名患者患有 NEC(654 名患有 sNEC,431 名患有 mNEC)。VLBW 婴儿在较低的胎龄(GA)时表现出更高的 sNEC 发生率(p < 0.001)。我们提出的集成模型对 sNEC 预测的受试者工作特征曲线下面积为 0.721。结论:所提出的集成模型可用于预测哪些患有 NEC 的婴儿可能会发展为 sNEC。通过早期预测和及时干预,sNEC 的预后可能得到改善。已知:• 基于机器学习(ML)的技术已应用于 NEC 研究中的预测、诊断和预后,结果令人鼓舞。• 虽然大多数研究都使用腹部 X 光片和 NEC 的临床表现作为数据来源,并证明了它们的有效性,但在早期预测方面可能效果不佳。新内容:• 我们分析了 VLBW 婴儿在出生后 7 天内获得的围产期因素,并使用基于 ML 的分析方法,使用全国性队列数据,识别出哪些患有 NEC 的婴儿容易出现临床恶化,并且需要外科干预的风险很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22de/11098869/4817a04a5ccd/431_2024_5505_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验