Suppr超能文献

高危肾细胞癌根治性手术后复发的预测:“迈向”评分的建立与内部验证。

Predicting Recurrence After Radical Surgery for High-Risk Renal Cell Carcinoma: Development and Internal Validation of the "TOWARDS" Score.

机构信息

Department of Urology, Tokyo Women's Medical University, Tokyo, Japan.

Department of Urology and Transplant Surgery, Toda Chuo General Hospital, Saitama, Japan.

出版信息

Ann Surg Oncol. 2024 May;31(5):3513-3522. doi: 10.1245/s10434-024-14963-0. Epub 2024 Jan 29.

Abstract

BACKGROUND

Considering the reported greater benefits of immunotherapy and its unignorable adverse events in adjuvant therapy for high-risk renal cell carcinoma (hrRCC), accurate prediction may optimize drug use.

METHODS

The primary objective of this study was to generate a score-based prognostic model of recurrence-free survival in hrRCC. The study retrospectively evaluated 456 patients at two institutions who underwent radical surgery for nonmetastatic pT3-4 and/or N1-2 or pT2 and G4 disease. Clinical variables deemed universally available were selected through backward stepwise analysis and fitted by a multivariable Cox proportional hazards regression model. A point-based score was derived from regression coefficients. Discrimination, calibration, and decision curve analyses were conducted to evaluate predictive performance. Internal validation with bootstrapping was performed to correct for optimism.

RESULTS

The mean follow-up period was 55.3 months, and the median follow-up period was 28.0 months. During the follow-up period, the recurrence rate was 48.2% (n = 220) during a median of 75.7 months. Stepwise variable selection retained age, Eastern Cooperative Oncology Group (ECOG) performance status, presence or absence of symptoms, size of the primary tumor, pathologic T stage, pathologic N stage, tumor grade, and histology. Subsequently, the TOWARDS score (range 0-53) was developed from these variables. Internal validation showed an optimism-corrected C-index of 0.723 and a calibration slope of 0.834. The decision curve analysis showed the superiority of this score over the University of California, Los Angeles (UCLA) Integrated Staging System and GRade, Age, Nodes, and Tumor score.

CONCLUSIONS

The authors' novel TOWARDS scoring model had good accuracy for predicting disease recurrence in patients with hrRCC, and the clinical practicability was superior to that of the existing models.

摘要

背景

考虑到免疫疗法在高风险肾细胞癌(hrRCC)辅助治疗中报道的更大益处及其不可忽视的不良反应,准确预测可能会优化药物的使用。

方法

本研究的主要目的是建立一个基于评分的预测高风险肾细胞癌患者无复发生存率的预后模型。本研究回顾性评估了两家机构的 456 名患者,这些患者均接受了根治性手术治疗,肿瘤分期为非转移性 pT3-4 和/或 N1-2 或 pT2 和 G4 疾病。通过向后逐步分析选择被认为普遍可用的临床变量,并通过多变量 Cox 比例风险回归模型进行拟合。从回归系数中得出基于分数的评分。通过区分度、校准和决策曲线分析来评估预测性能。通过 bootstrap 进行内部验证以纠正乐观偏差。

结果

中位随访时间为 55.3 个月,中位随访时间为 28.0 个月。在随访期间,中位随访时间为 75.7 个月时,复发率为 48.2%(n=220)。逐步变量选择保留了年龄、东部肿瘤协作组(ECOG)表现状态、是否有症状、原发肿瘤大小、病理 T 分期、病理 N 分期、肿瘤分级和组织学。随后,从这些变量中开发了 TOWARDS 评分(范围 0-53)。内部验证显示,校正后 C 指数为 0.723,校准斜率为 0.834。决策曲线分析表明,该评分优于加利福尼亚大学洛杉矶分校(UCLA)综合分期系统和 GRade、Age、Nodes、Tumor 评分。

结论

作者提出的新颖 TOWARDS 评分模型对预测高风险肾细胞癌患者的疾病复发具有良好的准确性,并且其临床实用性优于现有模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验