School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
Guy's and St. Thomas' NHS Foundation Trust, London, UK.
Neuro Oncol. 2024 Jun 3;26(6):1138-1151. doi: 10.1093/neuonc/noae017.
The aim was to predict survival of glioblastoma at 8 months after radiotherapy (a period allowing for completing a typical course of adjuvant temozolomide), by applying deep learning to the first brain MRI after radiotherapy completion.
Retrospective and prospective data were collected from 206 consecutive glioblastoma, isocitrate dehydrogenase -wildtype patients diagnosed between March 2014 and February 2022 across 11 UK centers. Models were trained on 158 retrospective patients from 3 centers. Holdout test sets were retrospective (n = 19; internal validation), and prospective (n = 29; external validation from 8 distinct centers). Neural network branches for T2-weighted and contrast-enhanced T1-weighted inputs were concatenated to predict survival. A nonimaging branch (demographics/MGMT/treatment data) was also combined with the imaging model. We investigated the influence of individual MR sequences; nonimaging features; and weighted dense blocks pretrained for abnormality detection.
The imaging model outperformed the nonimaging model in all test sets (area under the receiver-operating characteristic curve, AUC P = .038) and performed similarly to a combined imaging/nonimaging model (P > .05). Imaging, nonimaging, and combined models applied to amalgamated test sets gave AUCs of 0.93, 0.79, and 0.91. Initializing the imaging model with pretrained weights from 10 000s of brain MRIs improved performance considerably (amalgamated test sets without pretraining 0.64; P = .003).
A deep learning model using MRI images after radiotherapy reliably and accurately determined survival of glioblastoma. The model serves as a prognostic biomarker identifying patients who will not survive beyond a typical course of adjuvant temozolomide, thereby stratifying patients into those who might require early second-line or clinical trial treatment.
本研究旨在通过深度学习技术,应用于放疗后首个脑部磁共振成像(MRI),预测胶质母细胞瘤患者放疗后 8 个月的生存情况(这一时间段足以完成典型的替莫唑胺辅助治疗)。
本研究回顾性和前瞻性收集了 206 例连续确诊的、异柠檬酸脱氢酶野生型胶质母细胞瘤患者的数据,这些患者均于 2014 年 3 月至 2022 年 2 月期间在英国 11 个中心诊断。模型的训练数据来自 3 个中心的 158 例回顾性患者。内部验证的回顾性测试集(n=19),外部验证的前瞻性测试集(来自 8 个不同中心的 n=29)。T2 加权和对比增强 T1 加权输入的神经网络分支用于预测生存情况。非影像分支(人口统计学/ MGMT/治疗数据)也与影像模型相结合。我们还研究了个别磁共振序列、非影像特征和用于异常检测的加权密集块的影响。
在所有测试集中,影像模型的表现均优于非影像模型(受试者工作特征曲线下面积,AUC P=0.038),且与影像/非影像联合模型的表现相当(P>0.05)。在合并的测试集中,影像、非影像和联合模型的 AUC 值分别为 0.93、0.79 和 0.91。在 10 000 例脑部 MRI 预训练的权重初始化影像模型,可显著提高性能(未预训练的合并测试集 AUC 为 0.64;P=0.003)。
使用放疗后 MRI 图像的深度学习模型能够可靠且准确地预测胶质母细胞瘤患者的生存情况。该模型可作为预后生物标志物,识别出无法在典型替莫唑胺辅助治疗后存活的患者,从而将患者分为可能需要早期二线或临床试验治疗的患者。