Suppr超能文献

通过迁移学习优化脑龄估计:一套预训练基础模型,用于在临床环境中提高性能和通用性。

Optimising brain age estimation through transfer learning: A suite of pre-trained foundation models for improved performance and generalisability in a clinical setting.

作者信息

Wood David A, Townend Matthew, Guilhem Emily, Kafiabadi Sina, Hammam Ahmed, Wei Yiran, Al Busaidi Ayisha, Mazumder Asif, Sasieni Peter, Barker Gareth J, Ourselin Sebastien, Cole James H, Booth Thomas C

机构信息

School of Biomedical Engineering and Imaging Sciences, Rayne Institute, King's College London, London, UK.

King's College Hospital NHS Foundation Trust, London, UK.

出版信息

Hum Brain Mapp. 2024 Mar;45(4):e26625. doi: 10.1002/hbm.26625.

Abstract

Estimated age from brain MRI data has emerged as a promising biomarker of neurological health. However, the absence of large, diverse, and clinically representative training datasets, along with the complexity of managing heterogeneous MRI data, presents significant barriers to the development of accurate and generalisable models appropriate for clinical use. Here, we present a deep learning framework trained on routine clinical data (N up to 18,890, age range 18-96 years). We trained five separate models for accurate brain age prediction (all with mean absolute error ≤4.0 years, R  ≥ .86) across five different MRI sequences (T -weighted, T -FLAIR, T -weighted, diffusion-weighted, and gradient-recalled echo T *-weighted). Our trained models offer dual functionality. First, they have the potential to be directly employed on clinical data. Second, they can be used as foundation models for further refinement to accommodate a range of other MRI sequences (and therefore a range of clinical scenarios which employ such sequences). This adaptation process, enabled by transfer learning, proved effective in our study across a range of MRI sequences and scan orientations, including those which differed considerably from the original training datasets. Crucially, our findings suggest that this approach remains viable even with limited data availability (as low as N = 25 for fine-tuning), thus broadening the application of brain age estimation to more diverse clinical contexts and patient populations. By making these models publicly available, we aim to provide the scientific community with a versatile toolkit, promoting further research in brain age prediction and related areas.

摘要

基于脑磁共振成像(MRI)数据估算年龄已成为一种很有前景的神经健康生物标志物。然而,缺乏大规模、多样化且具有临床代表性的训练数据集,以及管理异质性MRI数据的复杂性,为开发适用于临床的准确且通用的模型带来了重大障碍。在此,我们展示了一个基于常规临床数据训练的深度学习框架(样本量N最大为18,890,年龄范围为18至96岁)。我们针对五种不同的MRI序列(T加权、液体衰减反转恢复序列(T - FLAIR)、T加权、扩散加权以及梯度回波T *加权)训练了五个独立模型,用于准确预测脑龄(所有模型的平均绝对误差均≤4.0岁,R≥0.86)。我们训练的模型具有双重功能。首先,它们有潜力直接应用于临床数据。其次,它们可以用作基础模型进行进一步优化,以适应一系列其他MRI序列(从而适应一系列使用此类序列的临床场景)。在迁移学习的支持下,这种适配过程在我们的研究中被证明在一系列MRI序列和扫描方向上都是有效的,包括那些与原始训练数据集有很大差异的序列和方向。至关重要的是,我们的研究结果表明,即使数据可用性有限(微调时低至N = 25),这种方法仍然可行,从而将脑龄估计的应用范围扩展到更多样化的临床环境和患者群体。通过公开这些模型,我们旨在为科学界提供一个多功能工具包,促进脑龄预测及相关领域的进一步研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0078/10910262/bac646b2dc2b/HBM-45-e26625-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验