Suppr超能文献

利用机器学习寻找 FDA 批准的癌症药物的协同组合。

Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs.

机构信息

Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt.

Computer Science Unit, Deraya University, El-Minia, Egypt.

出版信息

Sci Rep. 2024 Jan 29;14(1):2428. doi: 10.1038/s41598-024-52814-w.

Abstract

Combination therapy is a fundamental strategy in cancer chemotherapy. It involves administering two or more anti-cancer agents to increase efficacy and overcome multidrug resistance compared to monotherapy. However, drug combinations can exhibit synergy, additivity, or antagonism. This study presents a machine learning framework to classify and predict cancer drug combinations. The framework utilizes several key steps including data collection and annotation from the O'Neil drug interaction dataset, data preprocessing, stratified splitting into training and test sets, construction and evaluation of classification models to categorize combinations as synergistic, additive, or antagonistic, application of regression models to predict combination sensitivity scores for enhanced predictions compared to prior work, and the last step is examination of drug features and mechanisms of action to understand synergy behaviors for optimal combinations. The models identified combination pairs most likely to synergize against different cancers. Kinase inhibitors combined with mTOR inhibitors, DNA damage-inducing drugs or HDAC inhibitors showed benefit, particularly for ovarian, melanoma, prostate, lung and colorectal carcinomas. Analysis highlighted Gemcitabine, MK-8776 and AZD1775 as frequently synergizing across cancer types. This machine learning framework provides a valuable approach to uncover more effective multi-drug regimens.

摘要

联合治疗是癌症化疗的基本策略。与单药治疗相比,它涉及使用两种或更多种抗癌药物来提高疗效并克服多药耐药性。然而,药物组合可能表现出协同作用、相加作用或拮抗作用。本研究提出了一种用于分类和预测癌症药物组合的机器学习框架。该框架利用了几个关键步骤,包括从 O'Neil 药物相互作用数据集收集和注释数据、数据预处理、分层分为训练集和测试集、构建和评估分类模型以将组合分类为协同、相加或拮抗、应用回归模型预测组合敏感性评分以提高与先前工作相比的预测效果,以及最后一步是检查药物特征和作用机制,以了解协同作用行为以获得最佳组合。该模型确定了针对不同癌症最有可能协同作用的组合对。激酶抑制剂与 mTOR 抑制剂、DNA 损伤诱导药物或 HDAC 抑制剂联合使用显示出益处,特别是对卵巢癌、黑色素瘤、前列腺癌、肺癌和结直肠癌。分析突出了吉西他滨、MK-8776 和 AZD1775 在多种癌症类型中经常协同作用。该机器学习框架为发现更有效的多药物方案提供了一种有价值的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e41/10825182/79ed86c74b9a/41598_2024_52814_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验