Suppr超能文献

多向关系增强超图表示学习在抗癌药物协同作用预测中的应用。

Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.

机构信息

College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.

Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.

出版信息

Bioinformatics. 2022 Oct 14;38(20):4782-4789. doi: 10.1093/bioinformatics/btac579.

Abstract

MOTIVATION

Drug combinations have exhibited promise in treating cancers with less toxicity and fewer adverse reactions. However, in vitro screening of synergistic drug combinations is time-consuming and labor-intensive because of the combinatorial explosion. Although a number of computational methods have been developed for predicting synergistic drug combinations, the multi-way relations between drug combinations and cell lines existing in drug synergy data have not been well exploited.

RESULTS

We propose a multi-way relation-enhanced hypergraph representation learning method to predict anti-cancer drug synergy, named HypergraphSynergy. HypergraphSynergy formulates synergistic drug combinations over cancer cell lines as a hypergraph, in which drugs and cell lines are represented by nodes and synergistic drug-drug-cell line triplets are represented by hyperedges, and leverages the biochemical features of drugs and cell lines as node attributes. Then, a hypergraph neural network is designed to learn the embeddings of drugs and cell lines from the hypergraph and predict drug synergy. Moreover, the auxiliary task of reconstructing the similarity networks of drugs and cell lines is considered to enhance the generalization ability of the model. In the computational experiments, HypergraphSynergy outperforms other state-of-the-art synergy prediction methods on two benchmark datasets for both classification and regression tasks and is applicable to unseen drug combinations or cell lines. The studies revealed that the hypergraph formulation allows us to capture and explain complex multi-way relations of drug combinations and cell lines, and also provides a flexible framework to make the best use of diverse information.

AVAILABILITY AND IMPLEMENTATION

The source data and codes of HypergraphSynergy can be freely downloaded from https://github.com/liuxuan666/HypergraphSynergy.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

药物组合在治疗癌症方面显示出了有希望的前景,具有更低的毒性和更少的不良反应。然而,由于组合爆炸,体外筛选协同药物组合既耗时又费力。尽管已经开发了许多用于预测协同药物组合的计算方法,但药物协同数据中药物组合与细胞系之间的多向关系尚未得到很好的利用。

结果

我们提出了一种基于多向关系增强的超图表示学习方法来预测抗癌药物协同作用,称为 HypergraphSynergy。HypergraphSynergy 将协同药物组合与癌细胞系表示为超图,其中药物和细胞系由节点表示,协同药物-药物-细胞系三重由超边表示,并利用药物和细胞系的生化特征作为节点属性。然后,设计了一个超图神经网络来从超图中学习药物和细胞系的嵌入,并预测药物协同作用。此外,还考虑了辅助任务,即重建药物和细胞系的相似网络,以增强模型的泛化能力。在计算实验中,HypergraphSynergy 在两个基准数据集上的分类和回归任务中都优于其他最先进的协同预测方法,并且适用于未见过的药物组合或细胞系。研究表明,超图的表述允许我们捕捉和解释药物组合和细胞系的复杂多向关系,并且还提供了一个灵活的框架,可以充分利用各种信息。

可用性和实现

HypergraphSynergy 的源数据和代码可以从 https://github.com/liuxuan666/HypergraphSynergy 上免费下载。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验