Suppr超能文献

一种用于小型小麦幼苗检测的方法:从标注模式到模型构建。

A method for small-sized wheat seedlings detection: from annotation mode to model construction.

作者信息

Wang Suwan, Zhao Jianqing, Cai Yucheng, Li Yan, Qi Xuerui, Qiu Xiaolei, Yao Xia, Tian Yongchao, Zhu Yan, Cao Weixing, Zhang Xiaohu

机构信息

National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.

College of Geography, Jiangsu Second Normal University, Nanjing, 211200, China.

出版信息

Plant Methods. 2024 Jan 29;20(1):15. doi: 10.1186/s13007-024-01147-w.

Abstract

The number of seedlings is an important indicator that reflects the size of the wheat population during the seedling stage. Researchers increasingly use deep learning to detect and count wheat seedlings from unmanned aerial vehicle (UAV) images. However, due to the small size and diverse postures of wheat seedlings, it can be challenging to estimate their numbers accurately during the seedling stage. In most related works in wheat seedling detection, they label the whole plant, often resulting in a higher proportion of soil background within the annotated bounding boxes. This imbalance between wheat seedlings and soil background in the annotated bounding boxes decreases the detection performance. This study proposes a wheat seedling detection method based on a local annotation instead of a global annotation. Moreover, the detection model is also improved by replacing convolutional and pooling layers with the Space-to-depth Conv module and adding a micro-scale detection layer in the YOLOv5 head network to better extract small-scale features in these small annotation boxes. The optimization of the detection model can reduce the number of error detections caused by leaf occlusion between wheat seedlings and the small size of wheat seedlings. The results show that the proposed method achieves a detection accuracy of 90.1%, outperforming other state-of-the-art detection methods. The proposed method provides a reference for future wheat seedling detection and yield prediction.

摘要

麦苗数量是反映苗期小麦群体大小的重要指标。研究人员越来越多地利用深度学习从无人机(UAV)图像中检测和计数麦苗。然而,由于麦苗个体较小且姿态多样,在苗期准确估计其数量具有挑战性。在大多数麦苗检测的相关工作中,他们对整株植物进行标注,这往往导致标注的边界框内土壤背景比例较高。标注边界框中麦苗与土壤背景之间的这种不平衡降低了检测性能。本研究提出了一种基于局部标注而非全局标注的麦苗检测方法。此外,通过用空间到深度卷积模块替换卷积层和池化层,并在YOLOv5头部网络中添加一个微尺度检测层,以更好地提取这些小标注框中的小尺度特征,对检测模型进行了改进。检测模型的优化可以减少麦苗之间叶片遮挡和麦苗个体较小导致的误检数量。结果表明,所提方法的检测准确率达到90.1%,优于其他先进的检测方法。所提方法为未来的麦苗检测和产量预测提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d87/10826033/6b10dec46266/13007_2024_1147_Fig1_HTML.jpg

相似文献

1
A method for small-sized wheat seedlings detection: from annotation mode to model construction.
Plant Methods. 2024 Jan 29;20(1):15. doi: 10.1186/s13007-024-01147-w.
2
Recognition of terminal buds of densely-planted Chinese fir seedlings using improved YOLOv5 by integrating attention mechanism.
Front Plant Sci. 2022 Oct 10;13:991929. doi: 10.3389/fpls.2022.991929. eCollection 2022.
3
An Ensemble Learning Model for Detecting Soybean Seedling Emergence in UAV Imagery.
Sensors (Basel). 2023 Jul 25;23(15):6662. doi: 10.3390/s23156662.
5
An improved algorithm based on YOLOv5 for detecting Ambrosia trifida in UAV images.
Front Plant Sci. 2024 May 10;15:1360419. doi: 10.3389/fpls.2024.1360419. eCollection 2024.
6
Estimation of sorghum seedling number from drone image based on support vector machine and YOLO algorithms.
Front Plant Sci. 2024 Sep 26;15:1399872. doi: 10.3389/fpls.2024.1399872. eCollection 2024.
8
Detection of tea leaf blight in UAV remote sensing images by integrating super-resolution and detection networks.
Environ Monit Assess. 2024 Oct 11;196(11):1044. doi: 10.1007/s10661-024-13221-w.
10
Detection method of wheat spike improved YOLOv5s based on the attention mechanism.
Front Plant Sci. 2022 Sep 28;13:993244. doi: 10.3389/fpls.2022.993244. eCollection 2022.

引用本文的文献

2
Unmanned aerial vehicle image detection of maize-YOLOv8n seedling leakage.
Front Plant Sci. 2025 May 23;16:1569229. doi: 10.3389/fpls.2025.1569229. eCollection 2025.
3
LGWheatNet: A Lightweight Wheat Spike Detection Model Based on Multi-Scale Information Fusion.
Plants (Basel). 2025 Apr 2;14(7):1098. doi: 10.3390/plants14071098.

本文引用的文献

1
Automatic rape flower cluster counting method based on low-cost labelling and UAV-RGB images.
Plant Methods. 2023 Apr 24;19(1):40. doi: 10.1186/s13007-023-01017-x.
2
Data-centric annotation analysis for plant disease detection: Strategy, consistency, and performance.
Front Plant Sci. 2022 Dec 7;13:1037655. doi: 10.3389/fpls.2022.1037655. eCollection 2022.
3
RootPainter: deep learning segmentation of biological images with corrective annotation.
New Phytol. 2022 Oct;236(2):774-791. doi: 10.1111/nph.18387. Epub 2022 Aug 10.
4
WSRD-Net: A Convolutional Neural Network-Based Arbitrary-Oriented Wheat Stripe Rust Detection Method.
Front Plant Sci. 2022 May 24;13:876069. doi: 10.3389/fpls.2022.876069. eCollection 2022.
5
YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms.
Comput Methods Programs Biomed. 2022 Jun;221:106903. doi: 10.1016/j.cmpb.2022.106903. Epub 2022 May 23.
6
Occlusion Robust Wheat Ear Counting Algorithm Based on Deep Learning.
Front Plant Sci. 2021 Jun 11;12:645899. doi: 10.3389/fpls.2021.645899. eCollection 2021.
7
Weakly Supervised Deep Nuclei Segmentation Using Partial Points Annotation in Histopathology Images.
IEEE Trans Med Imaging. 2020 Nov;39(11):3655-3666. doi: 10.1109/TMI.2020.3002244. Epub 2020 Oct 28.
9
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
10
80 million tiny images: a large data set for nonparametric object and scene recognition.
IEEE Trans Pattern Anal Mach Intell. 2008 Nov;30(11):1958-70. doi: 10.1109/TPAMI.2008.128.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验