Suppr超能文献

RLK-Unet的开发:一种用于脑转移检测和治疗反应评估的临床适用深度学习算法。

Development of RLK-Unet: a clinically favorable deep learning algorithm for brain metastasis detection and treatment response assessment.

作者信息

Son Seungyeon, Joo Bio, Park Mina, Suh Sang Hyun, Oh Hee Sang, Kim Jun Won, Lee Seoyoung, Ahn Sung Jun, Lee Jong-Min

机构信息

Department of Artificial Intelligence, Hanyang University, Seoul, Republic of Korea.

Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Republic of Korea.

出版信息

Front Oncol. 2024 Jan 15;13:1273013. doi: 10.3389/fonc.2023.1273013. eCollection 2023.

Abstract

PURPOSE/OBJECTIVES: Previous deep learning (DL) algorithms for brain metastasis (BM) detection and segmentation have not been commonly used in clinics because they produce false-positive findings, require multiple sequences, and do not reflect physiological properties such as necrosis. The aim of this study was to develop a more clinically favorable DL algorithm (RLK-Unet) using a single sequence reflecting necrosis and apply it to automated treatment response assessment.

METHODS AND MATERIALS

A total of 128 patients with 1339 BMs, who underwent BM magnetic resonance imaging using the contrast-enhanced 3D T1 weighted (T1WI) turbo spin-echo black blood sequence, were included in the development of the DL algorithm. Fifty-eight patients with 629 BMs were assessed for treatment response. The detection sensitivity, precision, Dice similarity coefficient (DSC), and agreement of treatment response assessments between neuroradiologists and RLK-Unet were assessed.

RESULTS

RLK-Unet demonstrated a sensitivity of 86.9% and a precision of 79.6% for BMs and had a DSC of 0.663. Segmentation performance was better in the subgroup with larger BMs (DSC, 0.843). The agreement in the response assessment for BMs between the radiologists and RLK-Unet was excellent (intraclass correlation, 0.84).

CONCLUSION

RLK-Unet yielded accurate detection and segmentation of BM and could assist clinicians in treatment response assessment.

摘要

目的/目标:先前用于脑转移瘤(BM)检测和分割的深度学习(DL)算法在临床上尚未得到广泛应用,因为它们会产生假阳性结果,需要多个序列,并且不能反映诸如坏死等生理特性。本研究的目的是开发一种更有利于临床的DL算法(RLK-Unet),使用反映坏死的单个序列,并将其应用于自动治疗反应评估。

方法和材料

共有128例患有1339个脑转移瘤的患者纳入了DL算法的开发,这些患者接受了使用对比增强3D T1加权(T1WI)涡轮自旋回波黑血序列的脑转移瘤磁共振成像。对58例患有629个脑转移瘤的患者进行了治疗反应评估。评估了神经放射科医生与RLK-Unet之间的检测灵敏度、精度、骰子相似系数(DSC)以及治疗反应评估的一致性。

结果

RLK-Unet对脑转移瘤的检测灵敏度为86.9%,精度为79.6%,DSC为0.663。在较大脑转移瘤的亚组中分割性能更好(DSC,0.843)。放射科医生与RLK-Unet之间对脑转移瘤反应评估的一致性非常好(组内相关性,0.84)。

结论

RLK-Unet能够准确检测和分割脑转移瘤,并可协助临床医生进行治疗反应评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5bc8/10823345/452946a1f257/fonc-13-1273013-g001.jpg

相似文献

4
Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
J Magn Reson Imaging. 2021 Nov;54(5):1608-1622. doi: 10.1002/jmri.27741. Epub 2021 May 25.
5
Construction and evaluation of a gated high-resolution neural network for automatic brain metastasis detection and segmentation.
Eur Radiol. 2023 Oct;33(10):6648-6658. doi: 10.1007/s00330-023-09648-3. Epub 2023 Apr 25.
8
Fully automated segmentation of lumbar bone marrow in sagittal, high-resolution T1-weighted magnetic resonance images using 2D U-NET.
Comput Biol Med. 2022 Jan;140:105105. doi: 10.1016/j.compbiomed.2021.105105. Epub 2021 Dec 1.
9
Toward Automated Detection of Silent Cerebral Infarcts in Children and Young Adults With Sickle Cell Anemia.
Stroke. 2023 Aug;54(8):2096-2104. doi: 10.1161/STROKEAHA.123.042683. Epub 2023 Jun 30.
10
MRI-based two-stage deep learning model for automatic detection and segmentation of brain metastases.
Eur Radiol. 2023 May;33(5):3521-3531. doi: 10.1007/s00330-023-09420-7. Epub 2023 Jan 25.

本文引用的文献

1
Associated Factors of Spontaneous Hemorrhage in Brain Metastases in Patients with Lung Adenocarcinoma.
Cancers (Basel). 2023 Jan 19;15(3):619. doi: 10.3390/cancers15030619.
2
2.5D and 3D segmentation of brain metastases with deep learning on multinational MRI data.
Front Neuroinform. 2023 Jan 18;16:1056068. doi: 10.3389/fninf.2022.1056068. eCollection 2022.
3
Automated Brain Metastases Segmentation With a Deep Dive Into False-positive Detection.
Adv Radiat Oncol. 2022 Sep 28;8(1):101085. doi: 10.1016/j.adro.2022.101085. eCollection 2023 Jan-Feb.
4
Deep learning for brain metastasis detection and segmentation in longitudinal MRI data.
Med Phys. 2022 Sep;49(9):5773-5786. doi: 10.1002/mp.15863. Epub 2022 Jul 22.
6
Deep Learning-Based Computer-Aided Detection System for Automated Treatment Response Assessment of Brain Metastases on 3D MRI.
Front Oncol. 2021 Oct 27;11:739639. doi: 10.3389/fonc.2021.739639. eCollection 2021.
7
Fully Automated MR Detection and Segmentation of Brain Metastases in Non-small Cell Lung Cancer Using Deep Learning.
J Magn Reson Imaging. 2021 Nov;54(5):1608-1622. doi: 10.1002/jmri.27741. Epub 2021 May 25.
8
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds.
Neuroimage. 2021 Aug 15;237:118140. doi: 10.1016/j.neuroimage.2021.118140. Epub 2021 May 3.
9
Predicting treatment response from longitudinal images using multi-task deep learning.
Nat Commun. 2021 Mar 25;12(1):1851. doi: 10.1038/s41467-021-22188-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验