Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Centre for Integrated Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
J Magn Reson Imaging. 2021 Nov;54(5):1608-1622. doi: 10.1002/jmri.27741. Epub 2021 May 25.
Non-small cell lung cancer (NSCLC) is the most common tumor entity spreading to the brain and up to 50% of patients develop brain metastases (BMs). Detection of BMs on MRI is challenging with an inherent risk of missed diagnosis.
To train and evaluate a deep learning model (DLM) for fully automated detection and 3D segmentation of BMs in NSCLC on clinical routine MRI.
Retrospective.
Ninety-eight NSCLC patients with 315 BMs on pretreatment MRI, divided into training (66 patients, 248 BMs) and independent test (17 patients, 67 BMs) and control (15 patients, 0 BMs) cohorts.
FIELD STRENGTH/SEQUENCE: T -/T -weighted, T -weighted contrast-enhanced (T CE; gradient-echo and spin-echo sequences), and FLAIR at 1.0, 1.5, and 3.0 T from various vendors and study centers.
A 3D convolutional neural network (DeepMedic) was trained on the training cohort using 5-fold cross-validation and evaluated on the independent test and control sets. Three-dimensional voxel-wise manual segmentations of BMs by a neurosurgeon and a radiologist on T CE served as the reference standard.
Sensitivity (recall) and false positive (FP) findings per scan, dice similarity coefficient (DSC) to compare the spatial overlap between manual and automated segmentations, Pearson's correlation coefficient (r) to evaluate the relationship between quantitative volumetric measurements of segmentations, and Wilcoxon rank-sum test to compare the volumes of BMs. A P value <0.05 was considered statistically significant.
In the test set, the DLM detected 57 of the 67 BMs (mean volume: 0.99 ± 4.24 cm ), resulting in a sensitivity of 85.1%, while FP findings of 1.5 per scan were observed. Missed BMs had a significantly smaller volume (0.05 ± 0.04 cm ) than detected BMs (0.96 ± 2.4 cm ). Compared with the reference standard, automated segmentations achieved a median DSC of 0.72 and a good volumetric correlation (r = 0.95). In the control set, 1.8 FPs/scan were observed.
Deep learning provided a high detection sensitivity and good segmentation performance for BMs in NSCLC on heterogeneous scanner data while yielding a low number of FP findings. Level of Evidence 3 Technical Efficacy Stage 2.
非小细胞肺癌(NSCLC)是最常见的扩散到大脑的肿瘤实体,多达 50%的患者会发生脑转移(BMs)。MRI 上检测 BMs 具有潜在的漏诊风险,具有挑战性。
在临床常规 MRI 上训练和评估用于 NSCLC 中 BMs 的全自动检测和 3D 分割的深度学习模型(DLM)。
回顾性。
98 例 NSCLC 患者,预处理 MRI 上有 315 个 BMs,分为训练(66 例患者,248 个 BMs)、独立测试(17 例患者,67 个 BMs)和对照(15 例患者,0 个 BMs)队列。
场强/序列:来自不同供应商和研究中心的 1.0、1.5 和 3.0 T 的 T1-/T1-加权、T1 加权对比增强(T CE;梯度回波和自旋回波序列)和 FLAIR。
使用 5 折交叉验证在训练队列上对 3D 卷积神经网络(DeepMedic)进行训练,并在独立测试集和对照组上进行评估。由神经外科医生和放射科医生对 T CE 上的 BMs 进行手动三维体素分割,作为参考标准。
每扫描的灵敏度(召回率)和假阳性(FP)发现,比较手动和自动分割之间的空间重叠的骰子相似系数(DSC),评估分割的定量体积测量之间的皮尔逊相关系数(r),以及比较 BMs 的体积的 Wilcoxon 秩和检验。P 值<0.05 被认为具有统计学意义。
在测试集中,该 DLM 检测到 67 个 BMs 中的 57 个(平均体积:0.99±4.24cm3),灵敏度为 85.1%,而每扫描观察到 1.5 个 FP 发现。漏诊的 BMs 体积明显小于检测到的 BMs(0.05±0.04cm3)。与参考标准相比,自动分割的中位数 DSC 为 0.72,体积相关性良好(r=0.95)。在对照组中,每扫描观察到 1.8 个 FP。
深度学习为 NSCLC 中 BMs 的异质扫描仪数据提供了高检测灵敏度和良好的分割性能,同时产生了低数量的 FP 发现。证据水平 3 技术功效阶段 2。