Suppr超能文献

利用多任务深度学习从纵向图像预测治疗反应。

Predicting treatment response from longitudinal images using multi-task deep learning.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.

Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

出版信息

Nat Commun. 2021 Mar 25;12(1):1851. doi: 10.1038/s41467-021-22188-y.

Abstract

Radiographic imaging is routinely used to evaluate treatment response in solid tumors. Current imaging response metrics do not reliably predict the underlying biological response. Here, we present a multi-task deep learning approach that allows simultaneous tumor segmentation and response prediction. We design two Siamese subnetworks that are joined at multiple layers, which enables integration of multi-scale feature representations and in-depth comparison of pre-treatment and post-treatment images. The network is trained using 2568 magnetic resonance imaging scans of 321 rectal cancer patients for predicting pathologic complete response after neoadjuvant chemoradiotherapy. In multi-institution validation, the imaging-based model achieves AUC of 0.95 (95% confidence interval: 0.91-0.98) and 0.92 (0.87-0.96) in two independent cohorts of 160 and 141 patients, respectively. When combined with blood-based tumor markers, the integrated model further improves prediction accuracy with AUC 0.97 (0.93-0.99). Our approach to capturing dynamic information in longitudinal images may be broadly used for screening, treatment response evaluation, disease monitoring, and surveillance.

摘要

影像学检查常用于评估实体瘤的治疗反应。目前的影像学反应指标不能可靠地预测潜在的生物学反应。在这里,我们提出了一种多任务深度学习方法,允许同时进行肿瘤分割和反应预测。我们设计了两个 Siamese 子网,它们在多个层连接,这使得能够整合多尺度特征表示,并深入比较治疗前后的图像。该网络使用 321 例直肠癌患者的 2568 例磁共振成像扫描进行训练,用于预测新辅助放化疗后的病理完全缓解。在多中心验证中,基于影像学的模型在两个独立队列(160 例和 141 例)中分别达到 AUC 为 0.95(95%置信区间:0.91-0.98)和 0.92(0.87-0.96)。当与基于血液的肿瘤标志物结合时,综合模型进一步提高了预测准确性,AUC 为 0.97(0.93-0.99)。我们捕捉纵向图像中动态信息的方法可以广泛用于筛查、治疗反应评估、疾病监测和随访。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aee0/7994301/4782515254ba/41467_2021_22188_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验