Suppr超能文献

基于 CT 的深度学习模型预测髋部骨折患者的后续骨折风险。

A CT-based Deep Learning Model for Predicting Subsequent Fracture Risk in Patients with Hip Fracture.

机构信息

From the Interdisciplinary Program in Bioengineering (Y.K., Y.S.) and Integrated Major in Innovative Medical Science (Y.K.), Seoul National University Graduate School, Seoul, Republic of Korea; Department of Radiology (Y.K.), Transdisciplinary Department of Medicine & Advanced Technology (Y.G.K., B.W.K., Y.S.), and Department of Internal Medicine (J.H.K., C.S.S.), Seoul National University Hospital, Seoul, Republic of Korea; Departments of Orthopaedic Surgery (J.W.P., Y.K.L.) and Internal Medicine (S.H.K.), Seoul National University Bundang Hospital, 82 Gumi-ro 173 Beon-gil, Bundang gu, Seongnam, Republic of Korea; Departments of Medicine (Y.G.K.) and Internal Medicine (S.H.K., J.H.K., S.W.K., C.S.S.), Seoul National University College of Medicine, Seoul, Republic of Korea; and Department of Internal Medicine, Seoul National University Boramae Hospital, Seoul, Republic of Korea (S.W.K.).

出版信息

Radiology. 2024 Jan;310(1):e230614. doi: 10.1148/radiol.230614.

Abstract

Background Patients have the highest risk of subsequent fractures in the first few years after an initial fracture, yet models to predict short-term subsequent risk have not been developed. Purpose To develop and validate a deep learning prediction model for subsequent fracture risk using digitally reconstructed radiographs from hip CT in patients with recent hip fractures. Materials and Methods This retrospective study included adult patients who underwent three-dimensional hip CT due to a fracture from January 2004 to December 2020. Two-dimensional frontal, lateral, and axial digitally reconstructed radiographs were generated and assembled to construct an ensemble model. DenseNet modules were used to calculate risk probability based on extracted image features and fracture-free probability plots were output. Model performance was assessed using the C index and area under the receiver operating characteristic curve (AUC) and compared with other models using the paired test. Results The training and validation set included 1012 patients (mean age, 74.5 years ± 13.3 [SD]; 706 female, 113 subsequent fracture) and the test set included 468 patients (mean age, 75.9 years ± 14.0; 335 female, 22 subsequent fractures). In the test set, the ensemble model had a higher C index (0.73) for predicting subsequent fractures than that of other image-based models (C index range, 0.59-0.70 for five of six models; value range, < .001 to < .05). The ensemble model achieved AUCs of 0.74, 0.74, and 0.73 at the 2-, 3-, and 5-year follow-ups, respectively; higher than that of most other image-based models at 2 years (AUC range, 0.57-0.71 for five of six models; value range, < .001 to < .05) and 3 years (AUC range, 0.55-0.72 for four of six models; value range, < .001 to < .05). Moreover, the AUCs achieved by the ensemble model were higher than that of a clinical model that included known risk factors (2-, 3-, and 5-year AUCs of 0.58, 0.64, and 0.70, respectively; < .001 for all). Conclusion In patients with recent hip fractures, the ensemble deep learning model using digital reconstructed radiographs from hip CT showed good performance for predicting subsequent fractures in the short term. © RSNA, 2024 See also the editorial by Li and Jaremko in this issue.

摘要

背景

患者在初次骨折后的最初几年内发生后续骨折的风险最高,但尚未开发出预测短期后续风险的模型。目的:利用髋关节 CT 的二维正位、侧位和轴位数字重建射线照片,开发并验证一种用于预测近期髋关节骨折患者后续骨折风险的深度学习预测模型。材料与方法:本回顾性研究纳入了 2004 年 1 月至 2020 年 12 月因骨折而行三维髋关节 CT 检查的成年患者。生成二维正位、侧位和轴位数字重建射线照片,并将其组装成一个集合模型。使用 DenseNet 模块基于提取的图像特征计算风险概率,并输出无骨折概率图。使用 C 指数和受试者工作特征曲线下面积(AUC)评估模型性能,并与其他模型进行配对检验比较。结果:训练集和验证集共纳入 1012 例患者(平均年龄 74.5 岁±13.3[标准差];706 例女性,113 例发生后续骨折),测试集纳入 468 例患者(平均年龄 75.9 岁±14.0;335 例女性,22 例发生后续骨折)。在测试集中,与其他基于图像的模型(六个模型中五个的 C 指数范围为 0.59-0.70; 值范围为<.001 至<.05)相比,集合模型对预测后续骨折的 C 指数(0.73)更高。集合模型在 2 年、3 年和 5 年随访时的 AUC 分别为 0.74、0.74 和 0.73;在 2 年(六个模型中五个的 AUC 范围为 0.57-0.71; 值范围为<.001 至<.05)和 3 年(四个模型中 AUC 范围为 0.55-0.72; 值范围为<.001 至<.05)时,其 AUC 高于大多数其他基于图像的模型。此外,集合模型的 AUC 高于包含已知风险因素的临床模型(2 年、3 年和 5 年 AUC 分别为 0.58、0.64 和 0.70;均<.001)。结论:在近期髋关节骨折患者中,利用髋关节 CT 的二维数字重建射线照片开发的集合深度学习模型在短期预测后续骨折方面表现出良好的性能。©RSNA,2024 参见本期 Li 和 Jaremko 的社论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验