Suppr超能文献

利用影像组学和深度学习预测颈脊髓损伤患者术后上肢肌肉力量改善的多中心研究

Multicenter study on predicting postoperative upper limb muscle strength improvement in cervical spinal cord injury patients using radiomics and deep learning.

作者信息

Lin Fabin, Wang Kaifeng, Lai Minyun, Wu Yang, Chen Chunmei, Wang Yongjiang, Wang Rui

机构信息

Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.

Fujian Medical University, Fuzhou, 350001, Fujian, China.

出版信息

Sci Rep. 2025 Feb 17;15(1):5805. doi: 10.1038/s41598-024-72539-0.

Abstract

Cervical spinal cord injury is often catastrophic, frequently leading to irreversible impairment. MRI has become the gold standard for evaluating spinal cord injuries (SCI). Our study aimed to assess the accuracy of a radiomics approach, based on machine learning and utilizing conventional MRI, in predicting the prognosis of patients with SCI. In a retrospective analysis of 82 SCI patients from three hospitals, we categorized them into good (n = 49) and poor (n = 33) prognosis groups. Preoperative T2-weighted MRI images were segmented using 3D-Region of Interest (ROI) techniques, and both radiomic and deep transfer learning features were extracted. These features were normalized using Z-score and harmonized via ComBat. Feature selection was performed using a greedy algorithm and Least absolute shrinkage and selection operator (LASSO), and others, followed by the calculation of radiomics scores through linear regression. Machine learning was then used to identify the most predictive radiomic features. Model performance was evaluated by analyzing the area under the curve (AUC) and other indicators.Univariate analysis indicated that the demographic characteristics of cervical spinal cord injury were not statistically significant. In the test dataset, the random forest (RF) combined with radiomics and ResNet34 demonstrated better performance, with an accuracy of 0.800 and an AUC of 0.893.Using MRI, deep learning-based radiomics signals show promise in evaluating and predicting the postoperative prognosis of these patients.

摘要

颈髓损伤往往是灾难性的,常常导致不可逆转的损伤。磁共振成像(MRI)已成为评估脊髓损伤(SCI)的金标准。我们的研究旨在评估一种基于机器学习并利用传统MRI的放射组学方法在预测SCI患者预后方面的准确性。在对来自三家医院的82例SCI患者进行的回顾性分析中,我们将他们分为预后良好组(n = 49)和预后不良组(n = 33)。术前T2加权MRI图像采用三维感兴趣区(ROI)技术进行分割,并提取放射组学和深度迁移学习特征。这些特征使用Z分数进行标准化,并通过ComBat进行归一化。使用贪婪算法和最小绝对收缩和选择算子(LASSO)等进行特征选择,然后通过线性回归计算放射组学分数。然后使用机器学习来识别最具预测性的放射组学特征。通过分析曲线下面积(AUC)和其他指标来评估模型性能。单因素分析表明,颈髓损伤的人口统计学特征无统计学意义。在测试数据集中,随机森林(RF)结合放射组学和ResNet34表现出更好的性能,准确率为0.800,AUC为0.893。基于MRI的深度学习放射组学信号在评估和预测这些患者的术后预后方面显示出前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c161/11833087/5a2a5af11196/41598_2024_72539_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验