Suppr超能文献

利用术前CT图像中的2.5D放射组学数据开发用于T1N0胃癌诊断的深度学习模型。

Development of a deep learning model for T1N0 gastric cancer diagnosis using 2.5D radiomic data in preoperative CT images.

作者信息

He Jingyang, Xu Jingli, Chen Wujie, Cao Mengxuan, Zhang Jiaqing, Yang Qing, Li Enze, Zhang Ruolan, Tong Yahang, Zhang Yanqiang, Gao Chen, Zhao Qianyu, Xu Zhiyuan, Wang Lijing, Cheng Xiangdong, Zheng Guoliang, Pan Siwei, Hu Can

机构信息

Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.

Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.

出版信息

NPJ Precis Oncol. 2025 Jul 23;9(1):249. doi: 10.1038/s41698-025-01055-9.

Abstract

Early detection and precise preoperative staging of early gastric cancer (EGC) are critical. Therefore, this study aims to develop a deep learning model using portal venous phase CT images to accurately distinguish EGC without lymph node metastasis. This study included 3164 patients with gastric cancer (GC) who underwent radical surgery at two medical centers in China from 2006 to 2019. Moreover, 2.5D radiomic data and multi-instance learning (MIL) were novel approaches applied in this study. By basing the selection of features on 2.5D radiomic data and MIL, the ResNet101 model combined with the XGBoost model represented a satisfactory performance for diagnosing pT1N0 GC. Furthermore, the 2.5D MIL-based model demonstrated a markedly superior predictive performance compared to traditional radiomics models and clinical models. We first constructed a deep learning prediction model based on 2.5D radiomics and MIL for effectively diagnosing pT1N0 GC patients, which provides valuable information for the individualized treatment selection.

摘要

早期胃癌(EGC)的早期检测和精确术前分期至关重要。因此,本研究旨在开发一种深度学习模型,利用门静脉期CT图像准确区分无淋巴结转移的EGC。本研究纳入了2006年至2019年在中国两家医疗中心接受根治性手术的3164例胃癌(GC)患者。此外,2.5D放射组学数据和多实例学习(MIL)是本研究中应用的新方法。通过基于2.5D放射组学数据和MIL进行特征选择,ResNet101模型与XGBoost模型相结合在诊断pT1N0 GC方面表现出令人满意的性能。此外,基于2.5D MIL的模型与传统放射组学模型和临床模型相比,具有明显更优的预测性能。我们首先构建了基于2.5D放射组学和MIL的深度学习预测模型,以有效诊断pT1N0 GC患者,为个体化治疗选择提供有价值的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验