Suppr超能文献

建立定量非靶向分析的性能指标:以全氟和多氟烷基物质为例的演示

Establishing performance metrics for quantitative non-targeted analysis: a demonstration using per- and polyfluoroalkyl substances.

作者信息

Pu Shirley, McCord James P, Bangma Jacqueline, Sobus Jon R

机构信息

US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, 109 TW Alexander Dr., Research Triangle Park, NC, 27711, USA.

Oak Ridge Institute for Science and Education (ORISE) Participant, 109 TW Alexander Dr., Research Triangle Park, NC, 27711, USA.

出版信息

Anal Bioanal Chem. 2024 Feb;416(5):1249-1267. doi: 10.1007/s00216-023-05117-4. Epub 2024 Jan 30.

Abstract

Non-targeted analysis (NTA) is an increasingly popular technique for characterizing undefined chemical analytes. Generating quantitative NTA (qNTA) concentration estimates requires the use of training data from calibration "surrogates," which can yield diminished predictive performance relative to targeted analysis. To evaluate performance differences between targeted and qNTA approaches, we defined new metrics that convey predictive accuracy, uncertainty (using 95% inverse confidence intervals), and reliability (the extent to which confidence intervals contain true values). We calculated and examined these newly defined metrics across five quantitative approaches applied to a mixture of 29 per- and polyfluoroalkyl substances (PFAS). The quantitative approaches spanned a traditional targeted design using chemical-specific calibration curves to a generalizable qNTA design using bootstrap-sampled calibration values from "global" chemical surrogates. As expected, the targeted approaches performed best, with major benefits realized from matched calibration curves and internal standard correction. In comparison to the benchmark targeted approach, the most generalizable qNTA approach (using "global" surrogates) showed a decrease in accuracy by a factor of ~4, an increase in uncertainty by a factor of ~1000, and a decrease in reliability by ~5%, on average. Using "expert-selected" surrogates (n = 3) instead of "global" surrogates (n = 25) for qNTA yielded improvements in predictive accuracy (by ~1.5×) and uncertainty (by ~70×) but at the cost of further-reduced reliability (by ~5%). Overall, our results illustrate the utility of qNTA approaches for a subclass of emerging contaminants and present a framework on which to develop new approaches for more complex use cases.

摘要

非靶向分析(NTA)是一种用于表征未定义化学分析物的越来越流行的技术。生成定量NTA(qNTA)浓度估计值需要使用来自校准“替代物”的训练数据,相对于靶向分析,这可能会降低预测性能。为了评估靶向分析和qNTA方法之间的性能差异,我们定义了新的指标,这些指标传达了预测准确性、不确定性(使用95%反向置信区间)和可靠性(置信区间包含真实值的程度)。我们计算并检查了应用于29种全氟和多氟烷基物质(PFAS)混合物的五种定量方法的这些新定义指标。定量方法涵盖了使用化学特异性校准曲线的传统靶向设计,到使用来自“全局”化学替代物的自助抽样校准值的可推广qNTA设计。正如预期的那样,靶向方法表现最佳,通过匹配校准曲线和内标校正实现了主要优势。与基准靶向方法相比,最可推广的qNTA方法(使用“全局”替代物)平均显示准确性降低了约4倍,不确定性增加了约1000倍,可靠性降低了约5%。对于qNTA,使用“专家选择”的替代物(n = 3)而不是“全局”替代物(n = 25)提高了预测准确性(约1.5倍)和不确定性(约70倍),但代价是可靠性进一步降低(约5%)。总体而言

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2d8/10850229/f753e9fc5bdd/216_2023_5117_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验