Suppr超能文献

基于伪标签引导对比学习和对偶相关学习的深度多视图聚类

Deep Multiview Clustering by Pseudo-Label Guided Contrastive Learning and Dual Correlation Learning.

作者信息

Hu Shizhe, Zhang Chengkun, Zou Guoliang, Lou Zhengzheng, Ye Yangdong

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):3646-3658. doi: 10.1109/TNNLS.2024.3354731. Epub 2025 Feb 6.

Abstract

Deep multiview clustering (MVC) is to learn and utilize the rich relations across different views to enhance the clustering performance under a human-designed deep network. However, most existing deep MVCs meet two challenges. First, most current deep contrastive MVCs usually select the same instance across views as positive pairs and the remaining instances as negative pairs, which always leads to inaccurate contrastive learning (CL). Second, most deep MVCs only consider learning feature or cluster correlations across views, failing to explore the dual correlations. To tackle the above challenges, in this article, we propose a novel deep MVC framework by pseudo-label guided CL and dual correlation learning. Specifically, a novel pseudo-label guided CL mechanism is designed by using the pseudo-labels in each iteration to help removing false negative sample pairs, so that the CL for the feature distribution alignment can be more accurate, thus benefiting the discriminative feature learning. Different from most deep MVCs learning only one kind of correlation, we investigate both the feature and cluster correlations among views to discover the rich and comprehensive relations. Experiments on various datasets demonstrate the superiority of our method over many state-of-the-art compared deep MVCs. The source implementation code will be provided at https://github.com/ShizheHu/Deep-MVC-PGCL-DCL.

摘要

深度多视图聚类(MVC)旨在在人工设计的深度网络下学习并利用不同视图之间的丰富关系,以提升聚类性能。然而,现有的大多数深度MVC方法面临两个挑战。其一,当前大多数深度对比MVC方法通常选择跨视图的相同实例作为正样本对,其余实例作为负样本对,这往往导致对比学习(CL)不准确。其二,大多数深度MVC方法仅考虑学习跨视图的特征或聚类相关性,未能探索双重相关性。为应对上述挑战,在本文中,我们提出了一种通过伪标签引导的CL和双重相关性学习的新型深度MVC框架。具体而言,通过在每次迭代中使用伪标签设计了一种新颖的伪标签引导CL机制,以帮助去除假负样本对,从而使特征分布对齐的CL更加准确,进而有利于判别性特征学习。与大多数仅学习一种相关性的深度MVC方法不同,我们研究了视图之间的特征和聚类相关性,以发现丰富而全面的关系。在各种数据集上的实验表明,我们的方法优于许多与之比较的深度MVC方法。源代码实现将在https://github.com/ShizheHu/Deep-MVC-PGCL-DCL上提供。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验