Cui Jinrong, Li Yuting, Huang Han, Wen Jie
IEEE Trans Image Process. 2024;33:4753-4764. doi: 10.1109/TIP.2024.3444269. Epub 2024 Aug 30.
Consensus representation learning is one of the most popular approaches in the field of multi-view clustering. However, most of the existing methods cannot learn discriminative representations with a clustering-friendly structure since these methods ignore the separation among clusters and the compactness within each cluster. To tackle this issue, we propose a new deep multi-view clustering network with a dual contrastive mechanism to learn clustering-friendly representations. Specifically, our method employs dual contrasting losses: a dynamic cluster diffusion loss to maximize the distance between different clusters and a reliable neighbor-guided positive alignment loss to enhance compactness within each cluster. Our approach includes several key components: view-specific encoders to extract high-level features from each view, and an adaptive feature fusion strategy to obtain consensus representations across multiple views. The dynamic cluster diffusion module ensures inter-cluster separation by maximizing distances between different clusters in the consensus feature space. Simultaneously, the reliable neighbor-guided positive alignment module improves within-cluster compactness through a pseudo-label and nearest neighbor structure-driven contrastive loss. Experimental results on several datasets show that our method can acquire clustering-friendly representations with both good properties of inter-cluster separation and within-cluster compactness, and outperforms the existing state-of-the-art approaches in clustering performance. Our source code is available at https://github.com/tweety1028/DCMVC.
共识表示学习是多视图聚类领域中最流行的方法之一。然而,现有的大多数方法无法学习具有聚类友好结构的判别性表示,因为这些方法忽略了簇之间的分离以及每个簇内部的紧凑性。为了解决这个问题,我们提出了一种具有双重对比机制的新型深度多视图聚类网络,以学习聚类友好的表示。具体来说,我们的方法采用了双重对比损失:一种动态簇扩散损失,用于最大化不同簇之间的距离;以及一种可靠的邻居引导的正对齐损失,用于增强每个簇内部的紧凑性。我们的方法包括几个关键组件:特定视图编码器,用于从每个视图中提取高级特征;以及一种自适应特征融合策略,用于获得跨多个视图的共识表示。动态簇扩散模块通过最大化共识特征空间中不同簇之间的距离来确保簇间分离。同时,可靠的邻居引导的正对齐模块通过伪标签和最近邻结构驱动的对比损失来提高簇内紧凑性。在几个数据集上的实验结果表明,我们的方法可以获得具有良好簇间分离和簇内紧凑性的聚类友好表示,并且在聚类性能上优于现有的最先进方法。我们的源代码可在https://github.com/tweety1028/DCMVC获取。