Huang Qiu-Shi, Zhang Yang, Liu Peng Fei, Yang Hua Gui, Zhang Xie, Wei Su-Huai
Beijing Computational Science Research Center, Beijing 100193, China.
School of Materials Science and Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2318341121. doi: 10.1073/pnas.2318341121. Epub 2024 Jan 30.
As a prototypical photocatalyst, TiO[Formula: see text] has been extensively studied. An interesting yet puzzling experimental fact was that P25-a mixture of anatase and rutile TiO[Formula: see text]-outperforms the individual phases; the origin of this mysterious fact, however, remains elusive. Employing rigorous first-principles calculations, here we uncover a metastable intermediate structure (MIS), which is formed due to confinement at the anatase/rutile interface. The MIS has a high conduction-band minimum level and thus substantially enhances the overpotential of the hydrogen evolution reaction. Also, the corresponding band alignment at the interface leads to efficient separation of electrons and holes. The interfacial confinement additionally creates a wide distribution of the band gap in the vicinity of the interface, which in turn improves optical absorption. These factors all contribute to the enhanced photocatalytic efficiency in P25. Our insights provide a rationale to the puzzling superior photocatalytic performance of P25 and enable a strategy to achieve highly efficient photocatalysis via interface engineering.
作为一种典型的光催化剂,TiO₂ 已得到广泛研究。一个有趣却令人困惑的实验事实是,P25(锐钛矿型和金红石型 TiO₂ 的混合物)的性能优于单一相;然而,这一神秘事实的起源仍然难以捉摸。通过严格的第一性原理计算,我们在此发现了一种亚稳中间结构(MIS),它是由于锐钛矿/金红石界面处的限制作用而形成的。该 MIS 具有较高的导带最低能级,从而显著提高了析氢反应的过电位。此外,界面处相应的能带排列导致电子和空穴的有效分离。界面限制还在界面附近产生了较宽的带隙分布,进而改善了光吸收。这些因素共同促成了 P25 光催化效率的提高。我们的见解为 P25 令人困惑的优异光催化性能提供了理论依据,并为通过界面工程实现高效光催化提供了一种策略。