Suppr超能文献

用于变化环境中学习进化的神经网络模型。

A neural network model for the evolution of learning in changing environments.

机构信息

Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.

出版信息

PLoS Comput Biol. 2024 Jan 30;20(1):e1011840. doi: 10.1371/journal.pcbi.1011840. eCollection 2024 Jan.

Abstract

Learning from past experience is an important adaptation and theoretical models may help to understand its evolution. Many of the existing models study simple phenotypes and do not consider the mechanisms underlying learning while the more complex neural network models often make biologically unrealistic assumptions and rarely consider evolutionary questions. Here, we present a novel way of modelling learning using small neural networks and a simple, biology-inspired learning algorithm. Learning affects only part of the network, and it is governed by the difference between expectations and reality. We use this model to study the evolution of learning under various environmental conditions and different scenarios for the trade-off between exploration (learning) and exploitation (foraging). Efficient learning readily evolves in our individual-based simulations. However, in line with previous studies, the evolution of learning is less likely in relatively constant environments, where genetic adaptation alone can lead to efficient foraging, or in short-lived organisms that cannot afford to spend much of their lifetime on exploration. Once learning does evolve, the characteristics of the learning strategy (i.e. the duration of the learning period and the learning rate) and the average performance after learning are surprisingly little affected by the frequency and/or magnitude of environmental change. In contrast, an organism's lifespan and the distribution of resources in the environment have a clear effect on the evolved learning strategy: a shorter lifespan or a broader resource distribution lead to fewer learning episodes and larger learning rates. Interestingly, a longer learning period does not always lead to better performance, indicating that the evolved neural networks differ in the effectiveness of learning. Overall, however, we show that a biologically inspired, yet relatively simple, learning mechanism can evolve to lead to an efficient adaptation in a changing environment.

摘要

从过去的经验中学习是一种重要的适应方式,理论模型可以帮助我们理解其进化过程。许多现有的模型研究简单的表型,而不考虑学习的机制,而更复杂的神经网络模型通常做出不切实际的生物学假设,很少考虑进化问题。在这里,我们提出了一种使用小型神经网络和一种简单的、受生物学启发的学习算法来进行学习建模的新方法。学习只影响网络的一部分,并且由期望与现实之间的差异来控制。我们使用这个模型来研究在各种环境条件下和探索(学习)与利用(觅食)之间权衡的不同场景下学习的进化。在我们的基于个体的模拟中,有效的学习很容易进化。然而,与之前的研究一致,在相对稳定的环境中,学习的进化可能性较小,在这种环境中,遗传适应本身就可以导致有效的觅食,或者在寿命较短的生物中,它们无法承受太多的生命用于探索。一旦学习进化了,学习策略的特征(即学习期的持续时间和学习率)和学习后的平均表现受环境变化的频率和/或幅度的影响很小。相比之下,生物体的寿命和环境中资源的分布对进化后的学习策略有明显的影响:寿命较短或资源分布较广导致学习次数较少,学习率较大。有趣的是,较长的学习期并不总是导致更好的表现,这表明进化后的神经网络在学习效果上存在差异。总的来说,我们展示了一种受生物学启发但相对简单的学习机制可以进化为在不断变化的环境中实现有效的适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/754f/10857588/63e0e693ce2f/pcbi.1011840.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验