Institute for Life Sciences/Electronics and Computer Sciences, University of Southampton, Southampton, (United Kingdom).
PLoS Comput Biol. 2020 Apr 13;16(4):e1006811. doi: 10.1371/journal.pcbi.1006811. eCollection 2020 Apr.
Cell differentiation in multicellular organisms requires cells to respond to complex combinations of extracellular cues, such as morphogen concentrations. Some models of phenotypic plasticity conceptualise the response as a relatively simple function of a single environmental cues (e.g. a linear function of one cue), which facilitates rigorous analysis. Conversely, more mechanistic models such those implementing GRNs allows for a more general class of response functions but makes analysis more difficult. Therefore, a general theory describing how cells integrate multi-dimensional signals is lacking. In this work, we propose a theoretical framework for understanding the relationships between environmental cues (inputs) and phenotypic responses (outputs) underlying cell plasticity. We describe the relationship between environment and cell phenotype using logical functions, making the evolution of cell plasticity equivalent to a simple categorisation learning task. This abstraction allows us to apply principles derived from learning theory to understand the evolution of multi-dimensional plasticity. Our results show that natural selection is capable of discovering adaptive forms of cell plasticity associated with complex logical functions. However, developmental dynamics cause simpler functions to evolve more readily than complex ones. By using conceptual tools derived from learning theory we show that this developmental bias can be interpreted as a learning bias in the acquisition of plasticity functions. Because of that bias, the evolution of plasticity enables cells, under some circumstances, to display appropriate plastic responses to environmental conditions that they have not experienced in their evolutionary past. This is possible when the selective environment mirrors the bias of the developmental dynamics favouring the acquisition of simple plasticity functions-an example of the necessary conditions for generalisation in learning systems. These results illustrate the functional parallelisms between learning in neural networks and the action of natural selection on environmentally sensitive gene regulatory networks. This offers a theoretical framework for the evolution of plastic responses that integrate information from multiple cues, a phenomenon that underpins the evolution of multicellularity and developmental robustness.
多细胞生物中的细胞分化要求细胞对复杂的细胞外信号组合(例如形态发生素浓度)做出反应。一些表型可塑性模型将这种反应概念化为对单一环境线索的相对简单的函数(例如,一个线索的线性函数),这便于进行严格的分析。相反,更具机制性的模型,如实现基因调控网络的模型,允许更一般的反应函数类,但使分析更加困难。因此,缺乏描述细胞如何整合多维信号的一般理论。在这项工作中,我们提出了一个理论框架,用于理解细胞可塑性的基础上环境线索(输入)和表型反应(输出)之间的关系。我们使用逻辑函数来描述环境和细胞表型之间的关系,使细胞可塑性的进化等同于一个简单的分类学习任务。这种抽象允许我们应用从学习理论中得出的原则来理解多维可塑性的进化。我们的结果表明,自然选择能够发现与复杂逻辑函数相关的适应性细胞可塑性形式。然而,发育动态导致更简单的函数比复杂的函数更容易进化。通过使用从学习理论中得出的概念工具,我们表明这种发育偏差可以被解释为在获得可塑性函数时的学习偏差。由于这种偏差,可塑性的进化使得细胞在某些情况下能够对它们在进化历史中没有经历过的环境条件表现出适当的可塑性反应。当选择环境反映出有利于获得简单可塑性函数的发育动态的偏差时,就可以实现这种情况,这是学习系统中泛化的必要条件的一个例子。这些结果说明了神经网络学习和自然选择对环境敏感的基因调控网络的作用之间的功能平行性。这为整合来自多个线索的信息的可塑性反应的进化提供了一个理论框架,这是多细胞性和发育稳健性进化的基础。