Suppr超能文献

适应环境变化能力的进化转折点。

Evolutionary tipping points in the capacity to adapt to environmental change.

作者信息

Botero Carlos A, Weissing Franz J, Wright Jonathan, Rubenstein Dustin R

机构信息

Initiative for Biological Complexity and the Department of the Interior Southeast Climate Science Center, North Carolina State University, Raleigh, NC 27695; Department of Biology, Washington University in St. Louis, St. Louis, MO 63130;

Centre for Ecological and Evolutionary Studies, University of Groningen, 9747 AG Groningen, The Netherlands;

出版信息

Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):184-9. doi: 10.1073/pnas.1408589111. Epub 2014 Nov 24.

Abstract

In an era of rapid climate change, there is a pressing need to understand how organisms will cope with faster and less predictable variation in environmental conditions. Here we develop a unifying model that predicts evolutionary responses to environmentally driven fluctuating selection and use this theoretical framework to explore the potential consequences of altered environmental cycles. We first show that the parameter space determined by different combinations of predictability and timescale of environmental variation is partitioned into distinct regions where a single mode of response (reversible phenotypic plasticity, irreversible phenotypic plasticity, bet-hedging, or adaptive tracking) has a clear selective advantage over all others. We then demonstrate that, although significant environmental changes within these regions can be accommodated by evolution, most changes that involve transitions between regions result in rapid population collapse and often extinction. Thus, the boundaries between response mode regions in our model correspond to evolutionary tipping points, where even minor changes in environmental parameters can have dramatic and disproportionate consequences on population viability. Finally, we discuss how different life histories and genetic architectures may influence the location of tipping points in parameter space and the likelihood of extinction during such transitions. These insights can help identify and address some of the cryptic threats to natural populations that are likely to result from any natural or human-induced change in environmental conditions. They also demonstrate the potential value of evolutionary thinking in the study of global climate change.

摘要

在气候变化迅速的时代,迫切需要了解生物体将如何应对环境条件中更快且更不可预测的变化。在此,我们开发了一个统一模型,该模型可预测对环境驱动的波动选择的进化响应,并使用这一理论框架来探索环境周期改变的潜在后果。我们首先表明,由环境变化的可预测性和时间尺度的不同组合所确定的参数空间被划分为不同区域,在这些区域中,单一的响应模式(可逆表型可塑性、不可逆表型可塑性、风险对冲或适应性跟踪)相对于所有其他模式具有明显的选择优势。然后我们证明,尽管这些区域内的重大环境变化可以通过进化来适应,但大多数涉及区域间转变的变化会导致种群迅速崩溃,且常常灭绝。因此,我们模型中响应模式区域之间的边界对应于进化临界点,在这个点上,即使环境参数的微小变化也可能对种群生存能力产生巨大且不成比例的影响。最后,我们讨论了不同的生活史和遗传结构可能如何影响参数空间中临界点的位置以及此类转变期间灭绝的可能性。这些见解有助于识别和应对一些可能因环境条件的任何自然或人为变化而对自然种群造成的潜在威胁。它们还展示了进化思维在全球气候变化研究中的潜在价值。

相似文献

1
Evolutionary tipping points in the capacity to adapt to environmental change.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):184-9. doi: 10.1073/pnas.1408589111. Epub 2014 Nov 24.
2
Shortsighted Evolution Constrains the Efficacy of Long-Term Bet Hedging.
Am Nat. 2019 Mar;193(3):409-423. doi: 10.1086/701786. Epub 2019 Jan 24.
3
Adapting to a Changing Environment: Modeling the Interaction of Directional Selection and Plasticity.
J Hered. 2016 Jan;107(1):15-24. doi: 10.1093/jhered/esv084. Epub 2015 Nov 12.
4
How stable 'should' epigenetic modifications be? Insights from adaptive plasticity and bet hedging.
Evolution. 2014 Mar;68(3):632-43. doi: 10.1111/evo.12324. Epub 2013 Dec 20.
5
Adaptive dynamics on an environmental gradient that changes over a geological time-scale.
J Theor Biol. 2015 Jul 7;376:91-104. doi: 10.1016/j.jtbi.2015.03.036. Epub 2015 Apr 7.
6
Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity.
J Evol Biol. 2012 Jul;25(7):1275-90. doi: 10.1111/j.1420-9101.2012.02512.x. Epub 2012 Apr 23.
7
The evolutionary ecology of individual phenotypic plasticity in wild populations.
J Evol Biol. 2007 May;20(3):831-44. doi: 10.1111/j.1420-9101.2007.01300.x.
8
The concept of fitness in fluctuating environments.
Trends Ecol Evol. 2015 May;30(5):273-81. doi: 10.1016/j.tree.2015.03.007. Epub 2015 Apr 3.
9
Global change and the evolution of phenotypic plasticity in plants.
Ann N Y Acad Sci. 2010 Sep;1206:35-55. doi: 10.1111/j.1749-6632.2010.05704.x.

引用本文的文献

3
Keeping up with climate change: have Arctic arthropods reached their phenological limits?
Proc Biol Sci. 2025 Jul;292(2051):20250350. doi: 10.1098/rspb.2025.0350. Epub 2025 Jul 23.
4
Nematode mind: exploring the role of the RNA interference pathway in learning, memory and beyond.
Philos Trans R Soc Lond B Biol Sci. 2025 Jun 26;380(1929):20240125. doi: 10.1098/rstb.2024.0125.
6
Antarctic macroalgal-associated amphipod assemblages exhibit long-term resistance to ocean acidification.
PeerJ. 2025 May 13;13:e19368. doi: 10.7717/peerj.19368. eCollection 2025.
7
Life History Strategies of the Winter Annual Plant (Asteraceae) in a Cold Desert Population.
Plants (Basel). 2025 Jan 20;14(2):284. doi: 10.3390/plants14020284.
8
High Capacity for Physiological Plasticity Occurs at a Slow Rate in Ectotherms.
Ecol Lett. 2025 Jan;28(1):e70046. doi: 10.1111/ele.70046.
10
Integrating the Thrifty Genotype and Evolutionary Mismatch Hypotheses to understand variation in cardiometabolic disease risk.
Evol Med Public Health. 2024 Jul 31;12(1):214-226. doi: 10.1093/emph/eoae014. eCollection 2024.

本文引用的文献

1
The future of species under climate change: resilience or decline?
Science. 2013 Aug 2;341(6145):504-8. doi: 10.1126/science.1237190.
2
Changes in ecologically critical terrestrial climate conditions.
Science. 2013 Aug 2;341(6145):486-92. doi: 10.1126/science.1237123.
3
Camouflage mismatch in seasonal coat color due to decreased snow duration.
Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7360-5. doi: 10.1073/pnas.1222724110. Epub 2013 Apr 15.
4
Evolution of transcription networks in response to temporal fluctuations.
Evolution. 2013 Apr;67(4):1091-104. doi: 10.1111/evo.12012. Epub 2012 Dec 20.
5
Hibernation.
Curr Biol. 2013 Mar 4;23(5):R188-93. doi: 10.1016/j.cub.2013.01.062.
6
Mechanisms and selection of evolvability: experimental evidence.
FEMS Microbiol Rev. 2013 Jul;37(4):572-82. doi: 10.1111/1574-6976.12008. Epub 2012 Nov 15.
7
Bet-hedging--a triple trade-off between means, variances and correlations.
Biol Rev Camb Philos Soc. 2012 Aug;87(3):742-55. doi: 10.1111/j.1469-185X.2012.00225.x. Epub 2012 Mar 10.
8
Natural selection. I. Variable environments and uncertain returns on investment.
J Evol Biol. 2011 Nov;24(11):2299-309. doi: 10.1111/j.1420-9101.2011.02378.x. Epub 2011 Sep 21.
9
Spatiotemporal environmental variation, risk aversion, and the evolution of cooperative breeding as a bet-hedging strategy.
Proc Natl Acad Sci U S A. 2011 Jun 28;108 Suppl 2(Suppl 2):10816-22. doi: 10.1073/pnas.1100303108. Epub 2011 Jun 20.
10
Modes of response to environmental change and the elusive empirical evidence for bet hedging.
Proc Biol Sci. 2011 Jun 7;278(1712):1601-9. doi: 10.1098/rspb.2011.0176. Epub 2011 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验