Liu Wendao, Wei Ran, Chen Junwei, Li Yangyang, Pang Huajin, Zhang Wentao, An Chao, Li Chengzhi
Department of Interventional therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, People's Republic of China.
Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
Eur Radiol. 2024 Aug;34(8):5094-5107. doi: 10.1007/s00330-024-10581-2. Epub 2024 Jan 30.
To develop and validate a risk scoring scale model (RSSM) for stratifying prognostic risk after intra-arterial therapies (IATs) for hepatocellular carcinoma (HCC).
Between February 2014 and October 2022, 2338 patients with HCC who underwent initial IATs were consecutively enrolled. These patients were divided into training datasets (TD, n = 1700), internal validation datasets (ITD, n = 428), and external validation datasets (ETD, n = 200). Five-years death was used to predict outcome. Thirty-four clinical information were input and five supervised machine learning (ML) algorithms, including eXtreme Gradient Boosting (XGBoost), Categorical Gradient Boosting (CatBoost), Gradient Boosting Decision Tree (GBDT), Light Gradient Boosting Machine (LGBT), and Random Forest (RF), were compared using the areas under the receiver operating characteristic (AUC) with DeLong test. The variables with top important ML scores were used to build the RSSM by stepwise Cox regression.
The CatBoost model achieved the best discrimination when 12 top variables were input, with the AUC of 0.851 (95% confidence intervals (CI), 0.833-0.868) for TD, 0.817 (95%CI, 0.759-0.857) for ITD, and 0.791 (95%CI, 0.748-0.834) for ETD. The RSSM was developed based on the immune checkpoint inhibitors (ICI) (hazard ratios (HR), 0.678; 95%CI 0.549, 0.837), tyrosine kinase inhibitors (TKI) (HR, 0.702; 95%CI 0.605, 0.814), local therapy (HR, 0.104; 95%CI 0.014, 0.747), response to the first IAT (HR, 4.221; 95%CI 2.229, 7.994), tumor size (HR, 1.054; 95%CI 1.038, 1.070), and BCLC grade (HR, 2.375; 95%CI 1.950, 2.894). Kaplan-Meier analysis confirmed the role of RSSM in risk stratification (p < 0.001).
The RSSM can stratify accurately prognostic risk for HCC patients received IAT. On the basis, an online calculator permits easy implementation of this model.
The risk scoring scale model could be easily implemented for physicians to stratify risk and predict prognosis quickly and accurately, thereby serving as a more favorable tool to strengthen individualized intra-arterial therapies and management in patients with unresectable hepatocellular carcinoma.
• The Categorical Gradient Boosting (CatBoost) algorithm achieved the optimal and robust predictive ability (AUC, 0.851 (95%CI, 0.833-0.868) in training datasets, 0.817 (95%CI, 0.759-0.857) in internal validation datasets, and 0.791 (95%CI, 0.748-0.834) in external validation datasets) for prediction of 5-years death of hepatocellular carcinoma (HCC) after intra-arterial therapies (IATs) among five machine learning models. • We used the SHapley Additive exPlanations algorithms to explain the CatBoost model so as to resolve the black boxes of machine learning principles. • A simpler restricted variable, risk scoring scale model (RSSM), derived by stepwise Cox regression for risk stratification after intra-arterial therapies for hepatocellular carcinoma, provides the potential forewarning to adopt combination strategies for high-risk patients.
开发并验证一种用于对肝细胞癌(HCC)动脉内治疗(IATs)后预后风险进行分层的风险评分量表模型(RSSM)。
2014年2月至2022年10月期间,连续纳入2338例接受初始IATs的HCC患者。这些患者被分为训练数据集(TD,n = 1700)、内部验证数据集(ITD,n = 428)和外部验证数据集(ETD,n = 200)。采用五年死亡率预测预后。输入34项临床信息,使用接受者操作特征曲线下面积(AUC)并通过德龙检验比较5种监督式机器学习(ML)算法,包括极端梯度提升(XGBoost)、分类梯度提升(CatBoost)、梯度提升决策树(GBDT)、轻量级梯度提升机(LGBT)和随机森林(RF)。将具有最高重要性ML分数的变量用于通过逐步Cox回归构建RSSM。
当输入12个最重要变量时,CatBoost模型实现了最佳辨别力,TD的AUC为0.851(95%置信区间(CI),0.833 - 0.868),ITD为0.817(95%CI,0.759 - 0.857),ETD为0.791(95%CI,0.748 - 0.834)。RSSM基于免疫检查点抑制剂(ICI)(风险比(HR),0.678;95%CI 0.549,0.837)、酪氨酸激酶抑制剂(TKI)(HR,0.702;95%CI 0.605,0.814)、局部治疗(HR,0.104;95%CI 0.014,0.747)、对首次IAT的反应(HR,4.221;95%CI 2.229,7.994)、肿瘤大小(HR,1.054;95%CI 1.038,1.070)和BCLC分级(HR,2.375;95%CI 1.950,2.894)构建。Kaplan - Meier分析证实了RSSM在风险分层中的作用(p < 0.001)。
RSSM能够准确地对接受IAT的HCC患者的预后风险进行分层。在此基础上,一个在线计算器使该模型易于应用。
风险评分量表模型可为医生轻松应用,以快速、准确地对风险进行分层并预测预后,从而成为加强不可切除肝细胞癌患者个体化动脉内治疗和管理的更有利工具。
• 在五种机器学习模型中,分类梯度提升(CatBoost)算法在预测肝细胞癌(HCC)动脉内治疗(IATs)后五年死亡率方面具有最佳且稳健的预测能力(训练数据集的AUC为0.851(95%CI,0.833 - 0.868),内部验证数据集为0.817(95%CI,0.759 - 0.857),外部验证数据集为0.791(95%CI,0.748 - 0.834))。• 我们使用Shapley加法解释算法来解释CatBoost模型,以解决机器学习原理的黑箱问题。• 一种通过逐步Cox回归推导得出的更简单的受限变量风险评分量表模型(RSSM),用于肝细胞癌动脉内治疗后的风险分层,为高危患者采用联合策略提供了潜在预警。