Suppr超能文献

CCL-DTI:在药物-靶标相互作用预测中引入对比损失。

CCL-DTI: contributing the contrastive loss in drug-target interaction prediction.

机构信息

Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, 1417614411, Iran.

Laboratory of System Biology, Bioinformatics and Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, 1417614411, Iran.

出版信息

BMC Bioinformatics. 2024 Jan 30;25(1):48. doi: 10.1186/s12859-024-05671-3.

Abstract

BACKGROUND

The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules: the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module.

RESULTS

In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets: Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets.

CONCLUSIONS

Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.

摘要

背景

药物-靶标相互作用(DTI)预测使用药物分子和蛋白质序列作为输入,以预测结合亲和力值。近年来,基于深度学习的模型受到了更多关注。这些方法有两个模块:特征提取模块和任务预测模块。在大多数基于深度学习的方法中,使用简单的任务预测损失(即分类任务的类别交叉熵和回归任务的均方误差)来学习模型。在机器学习中,基于对比的损失函数被开发出来以学习更具判别力的特征空间。在基于深度学习的模型中,提取更具判别力的特征空间可提高任务预测模块的性能。

结果

在本文中,我们使用多模态知识作为输入,并提出了一种基于注意力的融合技术来结合这些知识。此外,我们研究了如何利用对比损失函数与任务预测损失相结合,以帮助方法学习更强大的模型。考虑了四种对比损失函数:(1)最大间隔对比损失函数,(2)三元组损失函数,(3)多类 N 对损失目标,和(4)NT-Xent 损失函数。该模型使用四个著名的数据集进行评估:Wang 等人的数据集、Luo 的数据集、Davis 和 KIBA 数据集。

结论

因此,在回顾了最先进的方法后,我们通过结合蛋白质序列和药物分子,以及蛋白质-蛋白质相互作用网络和药物-药物相互作用网络,开发了一种多模态特征提取网络。结果表明,它的性能明显优于可比的最先进方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10d4/11264960/aca07cae79e2/12859_2024_5671_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验