Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, 1417614411, Iran.
Laboratory of System Biology, Bioinformatics and Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, 1417614411, Iran.
BMC Bioinformatics. 2024 Jan 30;25(1):48. doi: 10.1186/s12859-024-05671-3.
The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules: the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module.
In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets: Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets.
Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.
药物-靶标相互作用(DTI)预测使用药物分子和蛋白质序列作为输入,以预测结合亲和力值。近年来,基于深度学习的模型受到了更多关注。这些方法有两个模块:特征提取模块和任务预测模块。在大多数基于深度学习的方法中,使用简单的任务预测损失(即分类任务的类别交叉熵和回归任务的均方误差)来学习模型。在机器学习中,基于对比的损失函数被开发出来以学习更具判别力的特征空间。在基于深度学习的模型中,提取更具判别力的特征空间可提高任务预测模块的性能。
在本文中,我们使用多模态知识作为输入,并提出了一种基于注意力的融合技术来结合这些知识。此外,我们研究了如何利用对比损失函数与任务预测损失相结合,以帮助方法学习更强大的模型。考虑了四种对比损失函数:(1)最大间隔对比损失函数,(2)三元组损失函数,(3)多类 N 对损失目标,和(4)NT-Xent 损失函数。该模型使用四个著名的数据集进行评估:Wang 等人的数据集、Luo 的数据集、Davis 和 KIBA 数据集。
因此,在回顾了最先进的方法后,我们通过结合蛋白质序列和药物分子,以及蛋白质-蛋白质相互作用网络和药物-药物相互作用网络,开发了一种多模态特征提取网络。结果表明,它的性能明显优于可比的最先进方法。