Suppr超能文献

SSELM-neg:基于球形搜索的药物-靶标相互作用预测的极端学习机。

SSELM-neg: spherical search-based extreme learning machine for drug-target interaction prediction.

机构信息

School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China.

Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, People's Republic of China.

出版信息

BMC Bioinformatics. 2023 Feb 3;24(1):38. doi: 10.1186/s12859-023-05153-y.

Abstract

BACKGROUND

The experimental verification of a drug discovery process is expensive and time-consuming. Therefore, efficiently and effectively identifying drug-target interactions (DTIs) has been the focus of research. At present, many machine learning algorithms are used for predicting DTIs. The key idea is to train the classifier using an existing DTI to predict a new or unknown DTI. However, there are various challenges, such as class imbalance and the parameter optimization of many classifiers, that need to be solved before an optimal DTI model is developed.

METHODS

In this study, we propose a framework called SSELM-neg for DTI prediction, in which we use a screening approach to choose high-quality negative samples and a spherical search approach to optimize the parameters of the extreme learning machine.

RESULTS

The results demonstrated that the proposed technique outperformed other state-of-the-art methods in 10-fold cross-validation experiments in terms of the area under the receiver operating characteristic curve (0.986, 0.993, 0.988, and 0.969) and AUPR (0.982, 0.991, 0.982, and 0.946) for the enzyme dataset, G-protein coupled receptor dataset, ion channel dataset, and nuclear receptor dataset, respectively.

CONCLUSION

The screening approach produced high-quality negative samples with the same number of positive samples, which solved the class imbalance problem. We optimized an extreme learning machine using a spherical search approach to identify DTIs. Therefore, our models performed better than other state-of-the-art methods.

摘要

背景

药物发现过程的实验验证既昂贵又耗时。因此,高效、有效地识别药物-靶标相互作用(DTI)一直是研究的重点。目前,许多机器学习算法被用于预测 DTI。其关键思想是使用现有的 DTI 训练分类器,以预测新的或未知的 DTI。然而,在开发最佳 DTI 模型之前,需要解决各种挑战,如类不平衡和许多分类器的参数优化问题。

方法

在这项研究中,我们提出了一种称为 SSELM-neg 的 DTI 预测框架,其中我们使用筛选方法选择高质量的负样本,并使用球形搜索方法优化极限学习机的参数。

结果

结果表明,在酶数据集、G 蛋白偶联受体数据集、离子通道数据集和核受体数据集中,10 倍交叉验证实验中,所提出的技术在接收器工作特征曲线下面积(0.986、0.993、0.988 和 0.969)和 AUPR(0.982、0.991、0.982 和 0.946)方面均优于其他最先进的方法。

结论

筛选方法生成了与正样本数量相同的高质量负样本,解决了类不平衡问题。我们使用球形搜索方法优化了极限学习机,以识别 DTI。因此,我们的模型比其他最先进的方法表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a164/9896702/aa5a8fb8952d/12859_2023_5153_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验