Yang Chunhui, Coalson Timothy S, Smith Stephen M, Elam Jennifer S, Van Essen David C, Glasser Matthew F
bioRxiv. 2024 Jan 16:2024.01.15.574667. doi: 10.1101/2024.01.15.574667.
Functional magnetic resonance imaging (fMRI) data are dominated by noise and artifacts, with only a small fraction of the variance relating to neural activity. Temporal independent component analysis (tICA) is a recently developed method that enables selective denoising of fMRI artifacts related to physiology such as respiration. However, an automated and easy to use pipeline for tICA has not previously been available; instead, two manual steps have been necessary: 1) setting the group spatial ICA dimensionality after MELODIC's Incremental Group-PCA (MIGP) and 2) labeling tICA components as artifacts versus signals. Moreover, guidance has been lacking as to how many subjects and timepoints are needed to adequately re-estimate the temporal ICA decomposition and what alternatives are available for smaller groups or even individual subjects. Here, we introduce a nine-step fully automated tICA pipeline which removes global artifacts from fMRI dense timeseries after sICA+FIX cleaning and MSMAll alignment driven by functionally relevant areal features. Additionally, we have developed an automated "reclean" Pipeline for improved spatial ICA (sICA) artifact removal. Two major automated components of the pipeline are 1) an automatic group spatial ICA (sICA) dimensionality selection for MIGP data enabled by fitting multiple Wishart distributions; 2) a hierarchical classifier to distinguish group tICA signal components from artifactual components, equipped with a combination of handcrafted features from domain expert knowledge and latent features obtained via self-supervised learning on spatial maps. We demonstrate that the dimensionality estimated for the MIGP data from HCP Young Adult 3T and 7T datasets is comparable to previous manual tICA estimates, and that the group sICA decomposition is highly reproducible. We also show that the tICA classifier achieved over 0.98 Precision-Recall Area Under Curve (PR-AUC) and that the correctly classified components account for over 95% of the tICA-represented variance on multiple held-out evaluation datasets including the HCP-Young Adult, HCP-Aging and HCP-Development datasets under various settings. Our automated tICA pipeline is now available as part of the HCP pipelines, providing a powerful and user-friendly tool for the neuroimaging community.
功能磁共振成像(fMRI)数据主要由噪声和伪影主导,只有一小部分方差与神经活动有关。时间独立成分分析(tICA)是一种最近开发的方法,能够对与生理现象(如呼吸)相关的fMRI伪影进行选择性去噪。然而,以前还没有一个自动化且易于使用的tICA流程;相反,需要两个手动步骤:1)在MELODIC的增量组主成分分析(MIGP)之后设置组空间ICA维度;2)将tICA成分标记为伪影与信号。此外,对于需要多少受试者和时间点才能充分重新估计时间ICA分解,以及对于较小的组甚至个体受试者有哪些替代方法,一直缺乏指导。在这里,我们介绍了一个九步全自动化的tICA流程,该流程在由功能相关的区域特征驱动的sICA+FIX清洗和MSMAll对齐之后,从fMRI密集时间序列中去除全局伪影。此外,我们还开发了一个用于改进空间ICA(sICA)伪影去除的自动化“重新清洗”流程。该流程的两个主要自动化组件是:1)通过拟合多个威沙特分布实现对MIGP数据的自动组空间ICA(sICA)维度选择;2)一个分层分类器,用于区分组tICA信号成分和伪影成分,配备了来自领域专家知识的手工特征和通过对空间图进行自监督学习获得的潜在特征的组合。我们证明,从HCP青年成人3T和7T数据集中估计的MIGP数据维度与以前的手动tICA估计相当,并且组sICA分解具有高度可重复性。我们还表明,tICA分类器在曲线下的精确召回面积(PR-AUC)超过0.98,并且在包括HCP青年成人、HCP衰老和HCP发育数据集在内的多个保留评估数据集上,在各种设置下,正确分类的成分占tICA所代表方差的95%以上。我们的自动化tICA流程现在作为HCP流程的一部分可用,为神经成像社区提供了一个强大且用户友好的工具。