Suppr超能文献

模拟智能时代的植物科学。

Plant science in the age of simulation intelligence.

作者信息

Stock Michiel, Pieters Olivier, De Swaef Tom, Wyffels Francis

机构信息

KERMIT and Biobix, Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium.

IDLAB-AIRO, Ghent University, imec, Ghent, Belgium.

出版信息

Front Plant Sci. 2024 Jan 16;14:1299208. doi: 10.3389/fpls.2023.1299208. eCollection 2023.

Abstract

Historically, plant and crop sciences have been quantitative fields that intensively use measurements and modeling. Traditionally, researchers choose between two dominant modeling approaches: mechanistic plant growth models or data-driven, statistical methodologies. At the intersection of both paradigms, a novel approach referred to as "", has emerged as a powerful tool for comprehending and controlling complex systems, including plants and crops. This work explores the transformative potential for the plant science community of the nine simulation intelligence motifs, from understanding molecular plant processes to optimizing greenhouse control. Many of these concepts, such as surrogate models and agent-based modeling, have gained prominence in plant and crop sciences. In contrast, some motifs, such as open-ended optimization or program synthesis, still need to be explored further. The motifs of simulation intelligence can potentially revolutionize breeding and precision farming towards more sustainable food production.

摘要

从历史上看,植物与作物科学一直是大量使用测量和建模的定量领域。传统上,研究人员在两种主要建模方法之间做出选择:机械植物生长模型或数据驱动的统计方法。在这两种范式的交叉点上,一种被称为“”的新方法已成为理解和控制包括植物和作物在内的复杂系统的强大工具。这项工作探讨了九种模拟智能主题对植物科学界的变革潜力,从理解植物分子过程到优化温室控制。其中许多概念,如代理模型和基于代理的建模,在植物与作物科学中已受到关注。相比之下,一些主题,如开放式优化或程序合成,仍有待进一步探索。模拟智能主题有可能彻底改变育种和精准农业,实现更可持续的粮食生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a52/10824965/9a1d6b087ab5/fpls-14-1299208-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验