Suppr超能文献

植物胁迫表型高通量表型分析与机器学习综述

A Comprehensive Review of High Throughput Phenotyping and Machine Learning for Plant Stress Phenotyping.

作者信息

Gill Taqdeer, Gill Simranveer K, Saini Dinesh K, Chopra Yuvraj, de Koff Jason P, Sandhu Karansher S

机构信息

Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209 USA.

College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab 141004 India.

出版信息

Phenomics. 2022 Apr 4;2(3):156-183. doi: 10.1007/s43657-022-00048-z. eCollection 2022 Jun.

Abstract

During the last decade, there has been rapid adoption of ground and aerial platforms with multiple sensors for phenotyping various biotic and abiotic stresses throughout the developmental stages of the crop plant. High throughput phenotyping (HTP) involves the application of these tools to phenotype the plants and can vary from ground-based imaging to aerial phenotyping to remote sensing. Adoption of these HTP tools has tried to reduce the phenotyping bottleneck in breeding programs and help to increase the pace of genetic gain. More specifically, several root phenotyping tools are discussed to study the plant's hidden half and an area long neglected. However, the use of these HTP technologies produces big data sets that impede the inference from those datasets. Machine learning and deep learning provide an alternative opportunity for the extraction of useful information for making conclusions. These are interdisciplinary approaches for data analysis using probability, statistics, classification, regression, decision theory, data visualization, and neural networks to relate information extracted with the phenotypes obtained. These techniques use feature extraction, identification, classification, and prediction criteria to identify pertinent data for use in plant breeding and pathology activities. This review focuses on the recent findings where machine learning and deep learning approaches have been used for plant stress phenotyping with data being collected using various HTP platforms. We have provided a comprehensive overview of different machine learning and deep learning tools available with their potential advantages and pitfalls. Overall, this review provides an avenue for studying various HTP platforms with particular emphasis on using the machine learning and deep learning tools for drawing legitimate conclusions. Finally, we propose the conceptual challenges being faced and provide insights on future perspectives for managing those issues.

摘要

在过去十年中,地面和空中搭载多种传感器的平台被迅速采用,用于在作物生长发育的各个阶段对各种生物和非生物胁迫进行表型分析。高通量表型分析(HTP)涉及应用这些工具对植物进行表型分析,其范围可以从地面成像到航空表型分析再到遥感。采用这些HTP工具试图减少育种计划中的表型分析瓶颈,并有助于加快遗传增益的速度。更具体地说,本文讨论了几种根系表型分析工具,以研究植物隐藏的地下部分,这是一个长期被忽视的领域。然而,这些HTP技术的使用产生了大量数据集,阻碍了从这些数据集中得出推论。机器学习和深度学习为提取有用信息以得出结论提供了另一种机会。这些是跨学科的数据分析方法,使用概率、统计、分类、回归、决策理论、数据可视化和神经网络将提取的信息与获得的表型联系起来。这些技术使用特征提取、识别、分类和预测标准来识别用于植物育种和病理学活动的相关数据。本综述重点关注了近期的研究结果,即在利用各种HTP平台收集数据的情况下,机器学习和深度学习方法已被用于植物胁迫表型分析。我们全面概述了现有的不同机器学习和深度学习工具及其潜在的优点和缺陷。总体而言,本综述为研究各种HTP平台提供了一条途径,特别强调使用机器学习和深度学习工具得出合理结论。最后,我们提出了面临的概念性挑战,并对管理这些问题的未来前景提供了见解。

相似文献

3
Machine Learning for High-Throughput Stress Phenotyping in Plants.基于机器学习的高通量植物胁迫表型分析。
Trends Plant Sci. 2016 Feb;21(2):110-124. doi: 10.1016/j.tplants.2015.10.015. Epub 2015 Dec 1.
10
Enhancement of Plant Productivity in the Post-Genomics Era.后基因组时代植物生产力的提高
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验