文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Dynamic Prognosis Prediction for Patients on DAPT After Drug-Eluting Stent Implantation: Model Development and Validation.

作者信息

Li Fang, Rasmy Laila, Xiang Yang, Feng Jingna, Abdelhameed Ahmed, Hu Xinyue, Sun Zenan, Aguilar David, Dhoble Abhijeet, Du Jingcheng, Wang Qing, Niu Shuteng, Dang Yifang, Zhang Xinyuan, Xie Ziqian, Nian Yi, He JianPing, Zhou Yujia, Li Jianfu, Prosperi Mattia, Bian Jiang, Zhi Degui, Tao Cui

机构信息

McWilliams School of Biomedical Informatics University of Texas Health Science Center at Houston Houston TX USA.

Department of Artificial Intelligence and Informatics Mayo Clinic Jacksonville FL USA.

出版信息

J Am Heart Assoc. 2024 Feb 6;13(3):e029900. doi: 10.1161/JAHA.123.029900. Epub 2024 Jan 31.


DOI:10.1161/JAHA.123.029900
PMID:38293921
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11056175/
Abstract

BACKGROUND: The rapid evolution of artificial intelligence (AI) in conjunction with recent updates in dual antiplatelet therapy (DAPT) management guidelines emphasizes the necessity for innovative models to predict ischemic or bleeding events after drug-eluting stent implantation. Leveraging AI for dynamic prediction has the potential to revolutionize risk stratification and provide personalized decision support for DAPT management. METHODS AND RESULTS: We developed and validated a new AI-based pipeline using retrospective data of drug-eluting stent-treated patients, sourced from the Cerner Health Facts data set (n=98 236) and Optum's de-identified Clinformatics Data Mart Database (n=9978). The 36 months following drug-eluting stent implantation were designated as our primary forecasting interval, further segmented into 6 sequential prediction windows. We evaluated 5 distinct AI algorithms for their precision in predicting ischemic and bleeding risks. Model discriminative accuracy was assessed using the area under the receiver operating characteristic curve, among other metrics. The weighted light gradient boosting machine stood out as the preeminent model, thus earning its place as our AI-DAPT model. The AI-DAPT demonstrated peak accuracy in the 30 to 36 months window, charting an area under the receiver operating characteristic curve of 90% [95% CI, 88%-92%] for ischemia and 84% [95% CI, 82%-87%] for bleeding predictions. CONCLUSIONS: Our AI-DAPT excels in formulating iterative, refined dynamic predictions by assimilating ongoing updates from patients' clinical profiles, holding value as a novel smart clinical tool to facilitate optimal DAPT duration management with high accuracy and adaptability.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/7e3acb8341f7/JAH3-13-e029900-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/05c9d34078d2/JAH3-13-e029900-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/140330f82e76/JAH3-13-e029900-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/e151dd183727/JAH3-13-e029900-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/a3e401e0956f/JAH3-13-e029900-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/7e3acb8341f7/JAH3-13-e029900-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/05c9d34078d2/JAH3-13-e029900-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/140330f82e76/JAH3-13-e029900-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/e151dd183727/JAH3-13-e029900-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/a3e401e0956f/JAH3-13-e029900-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/87bb/11056175/7e3acb8341f7/JAH3-13-e029900-g002.jpg

相似文献

[1]
Dynamic Prognosis Prediction for Patients on DAPT After Drug-Eluting Stent Implantation: Model Development and Validation.

J Am Heart Assoc. 2024-2-6

[2]
Prediction of Ischemic and Bleeding Events Using the Dual Antiplatelet Therapy Score in an Unrestricted Percutaneous Coronary Intervention Population.

Circ Cardiovasc Interv. 2018-10

[3]
Dual antiplatelet therapy after coronary drug-eluting stent implantation in China: A large single center study.

Catheter Cardiovasc Interv. 2018-2-15

[4]
Validating Utility of Dual Antiplatelet Therapy Score in a Large Pooled Cohort From 3 Japanese Percutaneous Coronary Intervention Studies.

Circulation. 2017-10-5

[5]
Dual Antiplatelet Therapy for 6 Versus 18 Months After Biodegradable Polymer Drug-Eluting Stent Implantation.

JACC Cardiovasc Interv. 2017-6-26

[6]
6- Versus 24-Month Dual Antiplatelet Therapy After Implantation of Drug-Eluting Stents in Patients Nonresistant to Aspirin: Final Results of the ITALIC Trial (Is There a Life for DES After Discontinuation of Clopidogrel).

JACC Cardiovasc Interv. 2017-6-26

[7]
Clinical Usefulness of PRECISE-DAPT Score for Predicting Bleeding Events in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention: An Analysis From the SMART-DATE Randomized Trial.

Circ Cardiovasc Interv. 2020-5-1

[8]
Benefit and risk of prolonged dual antiplatelet therapy after drug-eluting stent implantation in patients with chronic kidney disease: A nationwide cohort study.

Atherosclerosis. 2022-7

[9]
6-Month Versus 12-Month Dual-Antiplatelet Therapy Following Long Everolimus-Eluting Stent Implantation: The IVUS-XPL Randomized Clinical Trial.

JACC Cardiovasc Interv. 2016-5-17

[10]
Risk-Benefit Profile of Longer-Than-1-Year Dual-Antiplatelet Therapy Duration After Drug-Eluting Stent Implantation in Relation to Clinical Presentation.

Circ Cardiovasc Interv. 2019-3

引用本文的文献

[1]
Platelets and diseases: signal transduction and advances in targeted therapy.

Signal Transduct Target Ther. 2025-5-16

[2]
Contrastive learning with transformer for adverse endpoint prediction in patients on DAPT post-coronary stent implantation.

Front Cardiovasc Med. 2025-1-13

本文引用的文献

[1]
Large language models in medicine.

Nat Med. 2023-8

[2]
Large language models encode clinical knowledge.

Nature. 2023-8

[3]
Comparison of De-escalation of DAPT Intensity or Duration in East Asian and Western Patients with ACS Undergoing PCI: A Systematic Review and Meta-analysis.

Thromb Haemost. 2023-8

[4]
Hi-BEHRT: Hierarchical Transformer-Based Model for Accurate Prediction of Clinical Events Using Multimodal Longitudinal Electronic Health Records.

IEEE J Biomed Health Inform. 2023-2

[5]
Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data.

Lancet Digit Health. 2022-6

[6]
Precise Score Validation in Buenos Aires 1 Registry.

Curr Probl Cardiol. 2023-6

[7]
2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.

Circulation. 2022-1-18

[8]
Artificial intelligence: A powerful paradigm for scientific research.

Innovation (Camb). 2021-10-28

[9]
Acute myocardial infarction: Development and application of an ICD-10-CM-based algorithm to a large U.S. healthcare claims-based database.

PLoS One. 2021

[10]
Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction.

NPJ Digit Med. 2021-5-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索