Li Fang, Sun Zenan, Abdelhameed Ahmed, Duan Tiehang, Rasmy Laila, Hu Xinyue, He Jianping, Dang Yifang, Feng Jingna, Li Jianfu, Wang Yichen, Lyu Tianchen, Braun Naomi, Pham Si, Gharacholou Michael, Fairweather DeLisa, Zhi Degui, Bian Jiang, Tao Cui
Department of Artificial Intelligence and Informatics, Mayo Clinic, Jacksonville, FL, United States.
McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, United States.
Front Cardiovasc Med. 2025 Jan 13;11:1460354. doi: 10.3389/fcvm.2024.1460354. eCollection 2024.
Effective management of dual antiplatelet therapy (DAPT) following drug-eluting stent (DES) implantation is crucial for preventing adverse events. Traditional prognostic tools, such as rule-based methods or Cox regression, despite their widespread use and ease, tend to yield moderate predictive accuracy within predetermined timeframes. This study introduces a new contrastive learning-based approach to enhance prediction efficacy over multiple time intervals.
We utilized retrospective, real-world data from the OneFlorida + Clinical Research Consortium. Our study focused on two primary endpoints: ischemic and bleeding events, with prediction windows of 1, 2, 3, 6, and 12 months post-DES implantation. Our approach first utilized an auto-encoder to compress patient features into a more manageable, condensed representation. Following this, we integrated a Transformer architecture with multi-head attention mechanisms to focus on and amplify the most salient features, optimizing the representation for better predictive accuracy. Then, we applied contrastive learning to enable the model to further refine its predictive capabilities by maximizing intra-class similarities and distinguishing inter-class differences. Meanwhile, the model was holistically optimized using multiple loss functions, to ensure the predicted results closely align with the ground-truth values from various perspectives. We benchmarked model performance against three cutting-edge deep learning-based survival models, i.e., DeepSurv, DeepHit, and SurvTrace.
The final cohort comprised 19,713 adult patients who underwent DES implantation with more than 1 month of records after coronary stenting. Our approach demonstrated superior predictive performance for both ischemic and bleeding events across prediction windows of 1, 2, 3, 6, and 12 months, with time-dependent concordance (C) index values ranging from 0.88 to 0.80 and 0.82 to 0.77, respectively. It consistently outperformed the baseline models, including DeepSurv, DeepHit, and SurvTrace, with statistically significant improvement in the C-index values for most evaluated scenarios.
The robust performance of our contrastive learning-based model underscores its potential to enhance DAPT management significantly. By delivering precise predictive insights at multiple time points, our method meets the current need for adaptive, personalized therapeutic strategies in cardiology, thereby offering substantial value in improving patient outcomes.
药物洗脱支架(DES)植入术后双联抗血小板治疗(DAPT)的有效管理对于预防不良事件至关重要。传统的预后工具,如基于规则的方法或Cox回归,尽管使用广泛且操作简便,但在预定时间范围内往往只能产生中等的预测准确性。本研究引入了一种基于对比学习的新方法,以提高多个时间间隔内的预测效果。
我们使用了来自OneFlorida +临床研究联盟的回顾性真实世界数据。我们的研究聚焦于两个主要终点:缺血和出血事件,预测窗口为DES植入术后1、2、3、6和12个月。我们的方法首先利用自动编码器将患者特征压缩为更易于管理的精简表示。在此之后,我们将具有多头注意力机制的Transformer架构集成进来,以聚焦并放大最显著的特征,优化表示以提高预测准确性。然后,我们应用对比学习使模型通过最大化类内相似性和区分类间差异来进一步完善其预测能力。同时,使用多个损失函数对模型进行整体优化,以确保预测结果从多个角度与真实值紧密对齐。我们将模型性能与三种基于深度学习的前沿生存模型进行了基准测试,即DeepSurv、DeepHit和SurvTrace。
最终队列包括19713名接受DES植入的成年患者,冠状动脉支架置入术后有超过1个月的记录。我们的方法在1、2、3、6和12个月的预测窗口内对缺血和出血事件均表现出卓越的预测性能,时间依赖性一致性(C)指数值分别为0.88至0.80和0.82至0.77。它始终优于包括DeepSurv、DeepHit和SurvTrace在内的基线模型,在大多数评估场景中C指数值有统计学意义的提高。
我们基于对比学习的模型的强大性能突显了其显著增强DAPT管理的潜力。通过在多个时间点提供精确的预测见解,我们的方法满足了当前心脏病学中对适应性、个性化治疗策略的需求,从而在改善患者预后方面具有重大价值。