Xu Hai, Zhang Ruanye, Luo Derong, Wang Jiuqing, Dou Hui, Zhang Xiaogang, Sun Gengzhi
Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China.
ACS Nano. 2023 Dec 26;17(24):25291-25300. doi: 10.1021/acsnano.3c08681. Epub 2023 Dec 12.
The high dissolution of polyiodides and unstable interface at the anode/electrolyte severely restrict the practical applications of rechargeable aqueous Zn-iodine batteries. Herein, we develop a zinc ion-based montmorillonite (ZMT) electrolyte membrane for synergizing ion sieve and solvation regulation to achieve highly stable Zn-iodine batteries. The rich M-O band and special cation-selective transport channel in ZMT locally tailor the solvation sheath around Zn and therefore achieve high transference number ( = 0.72), benefiting for uniform and reversible deposition/stripping of Zn. Meanwhile, the mechanisms for three-step polyiodide generation and shuttle-induced Zn corrosion are highlighted by characterization techniques. It is confirmed that the strong chemical adsorption between O atoms in ZMT and polyiodides species is the key to effectively inhibit the shuffle effect and side reactions. Consequently, the ZMT-based Zn-iodine battery delivers a high capacity of 0.45 mAh cm at 1 mA cm with a much improved Coulombic efficiency of 99.5% and outstanding capacity retention of 95% after 13 500 cycles at 10 mA cm. Moreover, owing to its high durability and chemical inertness and structural stability, ZMT-based electrolyte membranes can be recycled and applied in double-sided pouch cells, delivering a high areal capacity of 2.4 mAh cm at 1 mA cm.
多碘化物的高溶解性以及阳极/电解质处不稳定的界面严重限制了可充电水系锌碘电池的实际应用。在此,我们开发了一种基于锌离子的蒙脱石(ZMT)电解质膜,用于协同离子筛分和溶剂化调节,以实现高度稳定的锌碘电池。ZMT中丰富的M-O键和特殊的阳离子选择性传输通道可局部调整锌周围的溶剂化鞘层,从而实现高迁移数(=0.72),有利于锌的均匀且可逆的沉积/剥离。同时,通过表征技术突出了三步多碘化物生成和穿梭诱导的锌腐蚀的机制。证实了ZMT中的O原子与多碘化物物种之间的强化学吸附是有效抑制穿梭效应和副反应的关键。因此,基于ZMT的锌碘电池在1 mA cm²时可提供0.45 mAh cm²的高容量,库仑效率大幅提高至99.5%,在10 mA cm²下经过13500次循环后容量保持率高达95%。此外,由于其高耐久性、化学惰性和结构稳定性,基于ZMT的电解质膜可回收并应用于双面软包电池,在1 mA cm²时可提供2.4 mAh cm²的高面积容量。