Suppr超能文献

深度学习指导下的老年乳腺癌患者辅助化疗选择。

Deep learning-guided adjuvant chemotherapy selection for elderly patients with breast cancer.

机构信息

School of Medicine, Tongji University, Shanghai, China.

Department of Periodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.

出版信息

Breast Cancer Res Treat. 2024 May;205(1):97-107. doi: 10.1007/s10549-023-07237-y. Epub 2024 Jan 31.

Abstract

PURPOSE

The efficacy of adjuvant chemotherapy in elderly breast cancer patients is currently controversial. This study aims to provide personalized adjuvant chemotherapy recommendations using deep learning (DL).

METHODS

Six models with various causal inference approaches were trained to make individualized chemotherapy recommendations. Patients who received actual treatment recommended by DL models were compared with those who did not. Inverse probability treatment weighting (IPTW) was used to reduce bias. Linear regression, IPTW-adjusted risk difference (RD), and SurvSHAP(t) were used to interpret the best model.

RESULTS

A total of 5352 elderly breast cancer patients were included. The median (interquartile range) follow-up time was 52 (30-80) months. Among all models, the balanced individual treatment effect for survival data (BITES) performed best. Treatment according to following BITES recommendations was associated with survival benefit, with a multivariate hazard ratio (HR) of 0.78 (95% confidence interval (CI): 0.64-0.94), IPTW-adjusted HR of 0.74 (95% CI: 0.59-0.93), RD of 12.40% (95% CI: 8.01-16.90%), IPTW-adjusted RD of 11.50% (95% CI: 7.16-15.80%), difference in restricted mean survival time (dRMST) of 12.44 (95% CI: 8.28-16.60) months, IPTW-adjusted dRMST of 7.81 (95% CI: 2.93-11.93) months, and p value of the IPTW-adjusted Log-rank test of 0.033. By interpreting BITES, the debiased impact of patient characteristics on adjuvant chemotherapy was quantified, which mainly included breast cancer subtype, tumor size, number of positive lymph nodes, TNM stages, histological grades, and surgical type.

CONCLUSION

Our results emphasize the potential of DL models in guiding adjuvant chemotherapy decisions for elderly breast cancer patients.

摘要

目的

辅助化疗在老年乳腺癌患者中的疗效目前存在争议。本研究旨在使用深度学习(DL)提供个性化辅助化疗建议。

方法

使用具有不同因果推理方法的 6 个模型来制定个性化化疗建议。比较接受 DL 模型推荐的实际治疗和未接受治疗的患者。使用逆概率治疗加权(IPTW)来减少偏差。使用线性回归、IPTW 调整风险差异(RD)和 SurvSHAP(t)来解释最佳模型。

结果

共纳入 5352 例老年乳腺癌患者。中位(四分位距)随访时间为 52(30-80)个月。在所有模型中,平衡个体治疗效果生存数据(BITES)表现最佳。根据 BITES 建议进行治疗与生存获益相关,多变量风险比(HR)为 0.78(95%置信区间(CI):0.64-0.94),IPTW 调整 HR 为 0.74(95% CI:0.59-0.93),RD 为 12.40%(95% CI:8.01-16.90%),IPTW 调整 RD 为 11.50%(95% CI:7.16-15.80%),受限平均生存时间差异(dRMST)为 12.44(95% CI:8.28-16.60)个月,IPTW 调整 dRMST 为 7.81(95% CI:2.93-11.93)个月,IPTW 调整 Log-rank 检验 p 值为 0.033。通过解释 BITES,量化了患者特征对辅助化疗的无偏影响,主要包括乳腺癌亚型、肿瘤大小、阳性淋巴结数量、TNM 分期、组织学分级和手术类型。

结论

我们的研究结果强调了深度学习模型在指导老年乳腺癌患者辅助化疗决策方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验