School of Medicine, Tongji University, Shanghai, China.
Shanghai Hospital Development Center, Shanghai, China.
PLoS One. 2024 Aug 20;19(8):e0306711. doi: 10.1371/journal.pone.0306711. eCollection 2024.
There is ongoing uncertainty about the effectiveness of various adjuvant treatments for low-grade gliomas (LGGs). Machine learning (ML) models that predict individual treatment effects (ITE) and provide treatment recommendations could help tailor treatments to each patient's needs.
We sought to discern the individual suitability of radiotherapy (RT) or chemoradiotherapy (CRT) in LGG patients using ML models.
Ten ML models, trained to infer ITE in 4,042 LGG patients, were assessed. We compared patients who followed treatment recommendations provided by the models with those who did not. To mitigate the risk of treatment selection bias, we employed inverse probability treatment weighting (IPTW).
The Balanced Survival Lasso-Network (BSL) model showed the most significant protective effect among all the models we tested (hazard ratio (HR): 0.52, 95% CI, 0.41-0.64; IPTW-adjusted HR: 0.58, 95% CI, 0.45-0.74; the difference in restricted mean survival time (DRMST): 9.11, 95% CI, 6.19-12.03; IPTW-adjusted DRMST: 9.17, 95% CI, 6.30-11.83). CRT presented a protective effect in the 'recommend for CRT' group (IPTW-adjusted HR: 0.60, 95% CI, 0.39-0.93) yet presented an adverse effect in the 'recommend for RT' group (IPTW-adjusted HR: 1.64, 95% CI, 1.19-2.25). Moreover, the models predict that younger patients and patients with overlapping lesions or tumors crossing the midline are better suited for CRT (HR: 0.62, 95% CI, 0.42-0.91; IPTW-adjusted HR: 0.59, 95% CI, 0.36-0.97).
Our findings underscore the potential of the BSL model in guiding the choice of adjuvant treatment for LGGs patients, potentially improving survival time. This study emphasizes the importance of ML in customizing patient care, understanding the nuances of treatment selection, and advancing personalized medicine.
目前对于低级别胶质瘤(LGG)的各种辅助治疗的效果仍存在不确定性。预测个体治疗效果(ITE)并提供治疗建议的机器学习(ML)模型可以帮助根据每个患者的需求定制治疗方案。
我们试图使用 ML 模型来确定 LGG 患者接受放疗(RT)或放化疗(CRT)的个体适宜性。
我们评估了 10 种训练用于推断 4042 例 LGG 患者 ITE 的 ML 模型。我们比较了遵循模型提供的治疗建议的患者与未遵循治疗建议的患者。为了减轻治疗选择偏倚的风险,我们采用了逆概率治疗加权(IPTW)。
在我们测试的所有模型中,平衡生存套索网络(BSL)模型显示出最显著的保护作用(风险比(HR):0.52,95%置信区间,0.41-0.64;调整后的 IPTW-HR:0.58,95%置信区间,0.45-0.74;限制平均生存时间的差异(DRMST):9.11,95%置信区间,6.19-12.03;调整后的 DRMST:9.17,95%置信区间,6.30-11.83)。CRT 在“推荐 CRT”组中表现出保护作用(调整后的 IPTW-HR:0.60,95%置信区间,0.39-0.93),但在“推荐 RT”组中表现出不利影响(调整后的 IPTW-HR:1.64,95%置信区间,1.19-2.25)。此外,这些模型预测年龄较小的患者和具有重叠病变或肿瘤跨越中线的患者更适合 CRT(HR:0.62,95%置信区间,0.42-0.91;调整后的 IPTW-HR:0.59,95%置信区间,0.36-0.97)。
我们的研究结果强调了 BSL 模型在指导 LGG 患者辅助治疗选择方面的潜力,可能会改善生存时间。本研究强调了 ML 在定制患者护理、理解治疗选择细微差别以及推进个性化医学方面的重要性。