Suppr超能文献

个体水平的量化治疗效果更能说明推荐行个体化根治性前列腺切除术的意义:深度学习在前列腺癌治疗中的应用。

Quantified treatment effect at the individual level is more indicative for personalized radical prostatectomy recommendation: implications for prostate cancer treatment using deep learning.

机构信息

School of Medicine, Tongji University, Shanghai, China.

Shanghai Hospital Development Center, Shanghai, China.

出版信息

J Cancer Res Clin Oncol. 2024 Feb 1;150(2):67. doi: 10.1007/s00432-023-05602-4.

Abstract

BACKGROUND

There are potential uncertainties and overtreatment existing in radical prostatectomy (RP) for prostate cancer (PCa) patients, thus identifying optimal candidates is quite important.

PURPOSE

This study aims to establish a novel causal inference deep learning (DL) model to discern whether a patient can benefit more from RP and to identify heterogeneity in treatment responses among PCa patients.

METHODS

We introduce the Self-Normalizing Balanced individual treatment effect for survival data (SNB). Six models were trained to make individualized treatment recommendations for PCa patients. Inverse probability treatment weighting (IPTW) was used to avoid treatment selection bias.

RESULTS

35,236 patients were included. Patients whose actual treatment was consistent with SNB recommendations had better survival outcomes than those who were inconsistent (multivariate hazard ratio (HR): 0.76, 95% confidence interval (CI), 0.64-0.92; IPTW-adjusted HR: 0.77, 95% CI, 0.61-0.95; risk difference (RD): 3.80, 95% CI, 2.48-5.11; IPTW-adjusted RD: 2.17, 95% CI, 0.92-3.35; the difference in restricted mean survival time (dRMST): 3.81, 95% CI, 2.66-4.85; IPTW-adjusted dRMST: 3.23, 95% CI, 2.06-4.45). Keeping other covariates unchanged, patients with 1 ng/mL increase in PSA levels received RP caused 1.77 months increase in the time to 90% mortality, and the similar results could be found in age, Gleason score, tumor size, TNM stages, and metastasis status.

CONCLUSIONS

Our highly interpretable and reliable DL model (SNB) may identify patients with PCa who could benefit from RP, outperforming other models and clinical guidelines. Additionally, the DL-based treatment guidelines obtained can provide priori evidence for subsequent studies.

摘要

背景

根治性前列腺切除术(RP)治疗前列腺癌(PCa)患者存在潜在的不确定性和过度治疗,因此确定最佳候选者非常重要。

目的

本研究旨在建立一种新的因果推理深度学习(DL)模型,以辨别患者是否能从 RP 中获益更多,并识别 PCa 患者治疗反应的异质性。

方法

我们引入了用于生存数据分析的自归一化平衡个体治疗效果(SNB)。为 PCa 患者制定个体化治疗建议,共训练了 6 个模型。采用逆概率处理加权(IPTW)避免治疗选择偏倚。

结果

共纳入 35236 例患者。实际治疗与 SNB 建议一致的患者比不一致的患者生存结局更好(多变量风险比(HR):0.76,95%置信区间(CI),0.64-0.92;IPTW 校正 HR:0.77,95% CI,0.61-0.95;风险差异(RD):3.80,95% CI,2.48-5.11;IPTW 校正 RD:2.17,95% CI,0.92-3.35;受限平均生存时间差异(dRMST):3.81,95% CI,2.66-4.85;IPTW 校正 dRMST:3.23,95% CI,2.06-4.45)。在保持其他协变量不变的情况下,PSA 水平每增加 1ng/ml,RP 导致 90%死亡率时间增加 1.77 个月,年龄、Gleason 评分、肿瘤大小、TNM 分期和转移状态也有类似的结果。

结论

我们的高度可解释和可靠的 DL 模型(SNB)可以识别出可能从 RP 中获益的 PCa 患者,表现优于其他模型和临床指南。此外,获得的基于 DL 的治疗指南可以为后续研究提供先验证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/613c/11793417/fce52e51ced5/432_2023_5602_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验