Suppr超能文献

利用可解释机器学习和多源遥感技术了解中国东南部地面臭氧的空间和季节变化。

Understanding the spatial and seasonal variation of the ground-level ozone in Southeast China with an interpretable machine learning and multi-source remote sensing.

作者信息

Zhong Haobin, Zhen Ling, Yao Qiufang, Xiao Yanping, Liu Jinsong, Chen Baihua, Xu Wei

机构信息

School of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China; Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Jiaxing key Laboratory of Preparation and Application of Advanced Materials for Energy Conservation and Emission Reduction, Jiaxing 314001, China.

Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Fujian Key Laboratory of Atmospheric Ozone Pollution Prevention, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Sci Total Environ. 2024 Mar 20;917:170570. doi: 10.1016/j.scitotenv.2024.170570. Epub 2024 Jan 29.

Abstract

Ground-level ozone (O) pollution poses significant threats to both human health and air quality. This study uses ground observations and satellite retrievals to explore the spatiotemporal characteristics of ground-level O in Zhejiang Province, China. We created data-driven machine learning models that include meteorological, geographical and atmospheric parameters from multi-source remote sensing products, achieving good performance (Pearson's r of 0.81) in explaining regional O dynamics. Analyses revealed the crucial roles of temperature, relative humidity, total column O, and the distributions and interactions of precursor (volatile organic compounds and nitrogen oxides) in driving the varied O patterns observed in Zhejiang. Furthermore, the interpretable modeling quantified multifactor interactions that sustain high O levels in spring and autumn, suppress O levels in summer, and inhibit O formation in winter. This work demonstrates the value of a combined approach using satellite and machine learning as an effective novel tool for regional air quality assessment and control.

摘要

地面臭氧(O)污染对人类健康和空气质量都构成了重大威胁。本研究利用地面观测和卫星反演数据,探究中国浙江省地面臭氧的时空特征。我们构建了数据驱动的机器学习模型,该模型纳入了多源遥感产品中的气象、地理和大气参数,在解释区域臭氧动态方面表现良好(皮尔逊相关系数r为0.81)。分析表明,温度、相对湿度、总臭氧柱以及前体物(挥发性有机化合物和氮氧化物)的分布与相互作用,在驱动浙江观测到的臭氧变化模式中发挥了关键作用。此外,可解释模型量化了多因素相互作用,这些相互作用在春季和秋季维持高臭氧水平,在夏季抑制臭氧水平,在冬季抑制臭氧形成。这项工作证明了将卫星和机器学习相结合的方法作为区域空气质量评估和控制的有效新型工具的价值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验