Suppr超能文献

超高性能地质聚合物混凝土的物理和耐久性特性及微观结构行为的最新综述。

A state-of-the-art review of the physical and durability characteristics and microstructure behavior of ultra-high-performance geopolymer concrete.

作者信息

Hakeem Ibrahim Y, Zaid Osama, Arbili Mohamed M, Alyami Mana, Alhamami Ali, Alharthai Mohammad

机构信息

Department of Civil Engineering, College of Engineering, Najran University, Najran, Saudi Arabia.

Department of Civil Engineering, Swedish College of Engineering and Technology, 47070, Wah Cantt, Pakistan.

出版信息

Heliyon. 2024 Jan 11;10(2):e24263. doi: 10.1016/j.heliyon.2024.e24263. eCollection 2024 Jan 30.

Abstract

This paper provides a comprehensive review of ultra-high-performance geopolymer concrete (UHPGPC), an innovative, eco-friendly, and cost-effective variant of ultra-high-performance concrete (UHPC), devised to meet the rising request for ultra-high-strength construction materials. Previous research papers have not thoroughly analyzed and compared the rheological, physical, durability, and microstructural properties of UHPGPC with UHPC. Similarly, review articles scarcely investigate UHPGPC's strength properties and microstructural behavior under high temperatures. This paper includes an assessment of the correlation between compressive strength, splitting tensile strength, and modulus of elasticity (MOE). The current study also compares chloride ion penetration test outcomes, elevated temperature, electrical resistivity, and porosity tests to evaluate durability. To analyze the microstructure of UHPGPC, the paper assesses results from Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), and Mercury Intrusion Porosimetry (MIP). The findings from the present paper suggest that UHPGPC effectively meets the ideal mechanical property specifications of UHPC. Compared to UHPC, UHPGPC displayed a higher ion passage propensity due to larger pores (>100 nm). Geopolymer technologies present a greener path for producing UHPC by consuming less energy and emitting reduced CO. Introducing mineral fillers like silica fume impacts the mixture's flowability and increases its water needs. However, adding an optimal ratio of micro-silica as a partial substitute for granulated blast furnace slag further bolsters the strength characteristics of UHPGPC. The strength of UHPC can also be notably improved by adjusting the water-to-binder ratio, with specific ratios yielding considerable enhancements in compression strength. The selection of an alkaline activator plays a pivotal role in UHPC's heat resilience. Among them, a combination of potassium hydroxide and sodium silicate is the prime chemical activator for boosting strength performance, durability behavior, and microstructural attributes, particularly at temperatures beyond 600 °C. Eco-friendly Geopolymer Composites (EGCs) offer lower embodied energy and CO emissions than traditional composites, with certain components like polyvinyl alcohol fibers being key contributors to these emissions. Progress in self-healing materials is driving sustainability in construction through innovative techniques, such as bacterial applications and specific chemical reactions. The strength and workability of Engineered Geopolymer Composites are influenced by their fiber content, with certain fibers interacting weaker than others. On a microstructural level, UHPGPC has a relatively weaker structure than UHPC due to differences in pore size, but its durability is improved when reinforced with fibers.

摘要

本文全面综述了超高性能地聚合物混凝土(UHPGPC),它是超高性能混凝土(UHPC)的一种创新、环保且经济高效的变体,旨在满足对超高强度建筑材料不断增长的需求。以往的研究论文尚未对UHPGPC与UHPC的流变、物理、耐久性和微观结构特性进行深入分析和比较。同样,综述文章也很少研究UHPGPC在高温下的强度特性和微观结构行为。本文评估了抗压强度、劈裂抗拉强度和弹性模量(MOE)之间的相关性。当前研究还比较了氯离子渗透试验结果、高温、电阻率和孔隙率试验,以评估耐久性。为了分析UHPGPC的微观结构,本文评估了傅里叶变换红外光谱(FT - IR)、热重分析(TGA)、扫描电子显微镜(SEM)和压汞法(MIP)的结果。本文的研究结果表明,UHPGPC有效地满足了UHPC理想的力学性能规格。与UHPC相比,由于存在较大孔隙(>100 nm),UHPGPC表现出更高的离子通过倾向。地聚合物技术通过消耗更少的能源和减少二氧化碳排放,为生产UHPC提供了一条更绿色的途径。引入硅灰等矿物填料会影响混合物的流动性并增加其需水量。然而,添加最佳比例的微硅粉作为粒化高炉矿渣的部分替代品,可进一步增强UHPGPC的强度特性。通过调整水胶比,UHPC的强度也可显著提高,特定比例可使抗压强度有相当大的提升。碱性活化剂的选择对UHPC的耐热性起着关键作用。其中,氢氧化钾和硅酸钠的组合是提高强度性能、耐久性和微观结构属性的主要化学活化剂,尤其是在温度超过600°C时。与传统复合材料相比,环保型地聚合物复合材料(EGC)的内含能量和二氧化碳排放量更低,像聚乙烯醇纤维等某些成分是这些排放的主要贡献者。自愈材料的进展正通过细菌应用和特定化学反应等创新技术推动建筑行业的可持续发展。工程地聚合物复合材料的强度和工作性能受其纤维含量的影响,某些纤维之间的相互作用比其他纤维弱。在微观结构层面,由于孔径差异,UHPGPC的结构相对比UHPC弱,但用纤维增强后其耐久性会提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad55/10827696/658ed792ee3e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验