Desruisseaux Claudine, Broderick Conor, Lavergne Valéry, Sy Kim, Garcia Duang-Jai, Barot Gaurav, Locher Kerstin, Porter Charlene, Caza Mélissa, Charles Marthe K
Division of Medical Microbiology and Infection Control, Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver Coastal Health, Vancouver, British Columbia, Canada.
Faculty of Medicine, Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
J Clin Microbiol. 2024 Mar 13;62(3):e0106923. doi: 10.1128/jcm.01069-23. Epub 2024 Feb 1.
This study aimed to validate Metasystems' automated acid-fast bacilli (AFB) smear microscopy scanning and deep-learning-based image analysis module (Neon Metafer) with assistance on respiratory and pleural samples, compared to conventional manual fluorescence microscopy (MM). Analytical parameters were assessed first, followed by a retrospective validation study. In all, 320 archived auramine-O-stained slides selected non-consecutively [85 originally reported as AFB-smear-positive, 235 AFB-smear-negative slides; with an overall mycobacterial culture positivity rate of 24.1% (77/320)] underwent whole-slide imaging and were analyzed by the Metafer Neon AFB Module (version 4.3.130) using a predetermined probability threshold (PT) for AFB detection of 96%. Digital slides were then examined by a trained reviewer blinded to previous AFB smear and culture results, for the final interpretation of assisted digital microscopy (a-DM). Paired results from both microscopic methods were compared to mycobacterial culture. A scanning failure rate of 10.6% (34/320) was observed, leaving 286 slides for analysis. After discrepant analysis, concordance, positive and negative agreements were 95.5% (95%CI, 92.4%-97.6%), 96.2% (95%CI, 89.2%-99.2%), and 95.2% (95%CI, 91.3%-97.7%), respectively. Using mycobacterial culture as reference standard, a-DM and MM had comparable sensitivities: 90.7% (95%CI, 81.7%-96.2%) versus 92.0% (95%CI, 83.4%-97.0%) (-value = 1.00); while their specificities differed 91.9% (95%CI, 87.4%-95.2%) versus 95.7% (95%CI, 92.1%-98.0%), respectively (-value = 0.03). Using a PT of 96%, MetaSystems' platform shows acceptable performance. With a national laboratory staff shortage and a local low mycobacterial infection rate, this instrument when combined with culture, can reliably triage-negative AFB-smear respiratory slides and identify positive slides requiring manual confirmation and semi-quantification.
This manuscript presents a full validation of MetaSystems' automated acid-fast bacilli (AFB) smear microscopy scanning and deep-learning-based image analysis module using a probability threshold of 96% including accuracy, precision studies, and evaluation of limit of AFB detection on respiratory samples when the technology is used with assistance. This study is complementary to the conversation started by Tomasello et al. on the use of image analysis artificial intelligence software in routine mycobacterial diagnostic activities within the context of high-throughput laboratories with low incidence of tuberculosis.
本研究旨在验证Metasystems公司的自动抗酸杆菌(AFB)涂片显微镜扫描及基于深度学习的图像分析模块(Neon Metafer)在呼吸道和胸膜样本辅助检测方面的性能,并与传统手动荧光显微镜检查(MM)进行比较。首先评估分析参数,随后进行回顾性验证研究。总共320张非连续选取的金胺 - O染色存档玻片(85张最初报告为AFB涂片阳性,235张AFB涂片阴性;总体分枝杆菌培养阳性率为24.1%(77/320))进行了全玻片成像,并使用预定的AFB检测概率阈值(PT)为96%的Metafer Neon AFB模块(版本4.3.130)进行分析。然后由一位对先前AFB涂片和培养结果不知情的训练有素的审阅者检查数字玻片,以进行辅助数字显微镜检查(a - DM)的最终解读。将两种显微镜检查方法的配对结果与分枝杆菌培养结果进行比较。观察到扫描失败率为10.6%(34/320),剩余286张玻片用于分析。经过差异分析,一致性、阳性和阴性符合率分别为95.5%(95%CI,92.4% - 97.6%)、96.2%(95%CI,89.2% - 99.2%)和95.2%(95%CI,91.3% - 97.7%)。以分枝杆菌培养作为参考标准,a - DM和MM具有可比的敏感性:90.7%(95%CI,81.7% - 96.2%)对92.0%(95%CI,83.4% - 97.0%)(P值 = 1.00);而它们的特异性分别为91.9%(95%CI,87.4% - 95.2%)对95.7%(95%CI,92.1% - 98.0%)(P值 = 0.03)。使用96%的PT,MetaSystems平台显示出可接受的性能。鉴于国家实验室人员短缺以及当地分枝杆菌感染率较低,该仪器与培养相结合时,能够可靠地对AFB涂片阴性呼吸道玻片进行分流,并识别需要手动确认和半定量的阳性玻片。
本手稿对MetaSystems公司的自动抗酸杆菌(AFB)涂片显微镜扫描及基于深度学习的图像分析模块进行了全面验证,并使用96%的概率阈值,包括准确性、精密度研究以及在辅助使用该技术时对呼吸道样本AFB检测限的评估。本研究是对Tomasello等人在结核病发病率较低的高通量实验室背景下,关于在常规分枝杆菌诊断活动中使用图像分析人工智能软件的讨论的补充。