Suppr超能文献

使用卷积神经网络直接从临床标本中检测抗酸杆菌。

Use of a convolutional neural network for direct detection of acid-fast bacilli from clinical specimens.

作者信息

English Paul, Morrison Muir J, Mathison Blaine, Enrico Elizabeth, Shean Ryan, O'Fallon Brendan, Rupp Deven, Knight Katie, Rangel Alexandra, Gilivary Jeffrey, Vance Amanda, Hatch Haleina, Lin Leo, Ng David P, Shakir Salika M

机构信息

ARUP Institute for Research and Innovation in Diagnostic and Precision Medicine, ARUP Laboratories, Salt Lake City, Utah, USA.

ARUP Technical Operations Infectious Diseases, ARUP Laboratories, Salt Lake City, Utah, USA.

出版信息

Microbiol Spectr. 2025 Aug 5;13(8):e0060225. doi: 10.1128/spectrum.00602-25. Epub 2025 Jun 23.

Abstract

Mycobacteria, including (MTB) and non-tuberculosis mycobacteria (NTM), are important causes of infectious disease and cause significant mortality and morbidity globally. Fast detection is extremely important to reduce transmission and mortality associated with these infectious agents. Manual smear microscopy is a cost-effective tool for diagnosing and monitoring of these organisms; however, it is labor-intensive and requires highly-trained personnel. We present the development of an artificial intelligence computer vision process using a deep convolutional neural network to detect acid-fast bacilli (AFB) from Kinyoun acid-fast stained slides. We collected 231 clinical specimens between August 2023 and June 2024. Following acid-fast staining, whole slide images (WSI) were digitized, and AFB organisms were manually annotated. A machine learning computer vision model was trained using 11,411 annotated organisms across 109 WSI. Model predictions were correlated with final culture-confirmed results. The final model estimated AFB density per 1000 x microscope field of view (FOV). Using a density threshold of ≥10 AFB/1000xFOV (corresponding to 1 + per Clinical and Laboratory Standards Institute (CLSI) guideline M48) to predict positive culture results, the model correctly classified 68% of validation slides, with a sensitivity of 79% and specificity of 63%. Manual AO compared to final culture read showed sensitivity of 76% and specificity of 96%. Although performance of our model was not sufficient to be clinically implemented in our laboratory, our study provides a framework for AI-based AFB detection and a publicly available data set to support future advancements in automated detection of AFB.IMPORTANCEWe present the development of an artificial intelligence model to detect acid-fast bacilli (AFB) directly from stained clinical smears. While the model's current performance requires further improvement to be clinically useful in our lab, we detail our approach and share our expertly annotated data set to support future advancements in this area. By building on our work, researchers can develop better algorithms to improve the diagnosis of AFB, reducing the burden on laboratory staff and improving diagnostic speed and accuracy of these medically important organisms.

摘要

分枝杆菌,包括结核分枝杆菌(MTB)和非结核分枝杆菌(NTM),是传染病的重要病因,在全球范围内导致了显著的死亡率和发病率。快速检测对于减少与这些传染源相关的传播和死亡率极为重要。手工涂片显微镜检查是诊断和监测这些微生物的一种经济有效的工具;然而,它劳动强度大,需要训练有素的人员。我们展示了一种使用深度卷积神经网络的人工智能计算机视觉程序的开发,用于从金胺酚抗酸染色载玻片上检测抗酸杆菌(AFB)。我们在2023年8月至2024年6月期间收集了231份临床标本。抗酸染色后,将全玻片图像(WSI)数字化,并对抗酸杆菌微生物进行手动标注。使用来自109个WSI的11411个标注微生物训练了一个机器学习计算机视觉模型。模型预测结果与最终培养确诊结果相关。最终模型估计每1000倍显微镜视野(FOV)中的抗酸杆菌密度。使用≥10个抗酸杆菌/1000xFOV的密度阈值(对应于临床和实验室标准协会(CLSI)指南M48中的1+)来预测培养阳性结果,该模型正确分类了68%的验证载玻片,灵敏度为79%,特异性为63%。与最终培养读数相比,手工抗酸染色的灵敏度为76%,特异性为96%。尽管我们模型的性能在我们实验室中不足以临床应用,但我们的研究为基于人工智能的抗酸杆菌检测提供了一个框架以及一个公开可用的数据集,以支持抗酸杆菌自动检测的未来进展。重要性我们展示了一种直接从染色临床涂片中检测抗酸杆菌(AFB)的人工智能模型的开发。虽然该模型目前的性能需要进一步改进才能在我们实验室中具有临床实用性,但我们详细介绍了我们的方法,并分享了我们经过专业标注的数据集,以支持该领域的未来进展。通过基于我们的工作,研究人员可以开发更好的算法来改善抗酸杆菌的诊断,减轻实验室工作人员的负担,并提高这些医学上重要微生物的诊断速度和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/caff/12323672/57a056bde1bf/spectrum.00602-25.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验