Suppr超能文献

用于微生物成像与检测的深度学习

Deep Learning for Imaging and Detection of Microorganisms.

作者信息

Zhang Yang, Jiang Hao, Ye Taoyu, Juhas Mario

机构信息

College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.

College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.

出版信息

Trends Microbiol. 2021 Jul;29(7):569-572. doi: 10.1016/j.tim.2021.01.006. Epub 2021 Jan 30.

Abstract

Despite tremendous recent interest, the application of deep learning in microbiology has still not reached its full potential. To tackle the challenges faced by human-operated microscopy, deep-learning-based methods have been proposed for microscopic image analysis of a wide range of microorganisms, including viruses, bacteria, fungi, and parasites. We believe that deep-learning technology-based systems will be on the front line of monitoring and investigation of microorganisms.

摘要

尽管近期受到了极大关注,但深度学习在微生物学中的应用仍未充分发挥其潜力。为应对人工显微镜操作所面临的挑战,已提出基于深度学习的方法用于对包括病毒、细菌、真菌和寄生虫在内的多种微生物进行显微图像分析。我们相信,基于深度学习技术的系统将处于微生物监测和研究的前沿。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验