Suppr超能文献

用于微生物成像与检测的深度学习

Deep Learning for Imaging and Detection of Microorganisms.

作者信息

Zhang Yang, Jiang Hao, Ye Taoyu, Juhas Mario

机构信息

College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.

College of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China.

出版信息

Trends Microbiol. 2021 Jul;29(7):569-572. doi: 10.1016/j.tim.2021.01.006. Epub 2021 Jan 30.

Abstract

Despite tremendous recent interest, the application of deep learning in microbiology has still not reached its full potential. To tackle the challenges faced by human-operated microscopy, deep-learning-based methods have been proposed for microscopic image analysis of a wide range of microorganisms, including viruses, bacteria, fungi, and parasites. We believe that deep-learning technology-based systems will be on the front line of monitoring and investigation of microorganisms.

摘要

尽管近期受到了极大关注,但深度学习在微生物学中的应用仍未充分发挥其潜力。为应对人工显微镜操作所面临的挑战,已提出基于深度学习的方法用于对包括病毒、细菌、真菌和寄生虫在内的多种微生物进行显微图像分析。我们相信,基于深度学习技术的系统将处于微生物监测和研究的前沿。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验