Suppr超能文献

解码大规模神经网络中的威胁语境记忆。

Decoding context memories for threat in large-scale neural networks.

机构信息

Department of Psychiatry and Behavioral Sciences, The University of Texas at Austin, 1601 Trinity Street, Building B, Austin, TX 78712, United States.

Department of Kinesiology, The University of Alabama, 620 Judy Bonner Drive, Box 870312, Tuscaloosa, AL 35487, United States.

出版信息

Cereb Cortex. 2024 Jan 31;34(2). doi: 10.1093/cercor/bhae018.

Abstract

Humans are often tasked with determining the degree to which a given situation poses threat. Salient cues present during prior events help bring online memories for context, which plays an informative role in this process. However, it is relatively unknown whether and how individuals use features of the environment to retrieve context memories for threat, enabling accurate inferences about the current level of danger/threat (i.e. retrieve appropriate memory) when there is a degree of ambiguity surrounding the present context. We leveraged computational neuroscience approaches (i.e. independent component analysis and multivariate pattern analyses) to decode large-scale neural network activity patterns engaged during learning and inferring threat context during a novel functional magnetic resonance imaging task. Here, we report that individuals accurately infer threat contexts under ambiguous conditions through neural reinstatement of large-scale network activity patterns (specifically striatum, salience, and frontoparietal networks) that track the signal value of environmental cues, which, in turn, allows reinstatement of a mental representation, primarily within a ventral visual network, of the previously learned threat context. These results provide novel insight into distinct, but overlapping, neural mechanisms by which individuals may utilize prior learning to effectively make decisions about ambiguous threat-related contexts as they navigate the environment.

摘要

人类经常需要确定特定情况所构成的威胁程度。在先前事件中呈现的显著线索有助于在线检索上下文记忆,这在这个过程中起着信息提供的作用。然而,目前还不太清楚个体是否以及如何利用环境特征来检索威胁的上下文记忆,以便在当前上下文存在一定模糊性时,能够对当前的危险/威胁程度做出准确的推断(即检索到适当的记忆)。我们利用计算神经科学方法(即独立成分分析和多元模式分析)来解码在学习过程中涉及的大规模神经网络活动模式,并在一项新的功能性磁共振成像任务中推断威胁性上下文。在这里,我们报告说,个体可以通过神经重新激活与环境线索信号值相关的大规模网络活动模式(特别是纹状体、突显和额顶叶网络),在不确定条件下准确推断威胁性上下文,从而在先前学习的威胁性上下文中重新激活主要位于腹侧视觉网络中的心理表征。这些结果为个体如何利用先前的学习来有效地对与威胁相关的模糊环境做出决策提供了新的见解,这些决策是他们在环境中导航时做出的。

相似文献

1
Decoding context memories for threat in large-scale neural networks.
Cereb Cortex. 2024 Jan 31;34(2). doi: 10.1093/cercor/bhae018.
2
Reinstatement of item-specific contextual details during retrieval supports recombination-related false memories.
Neuroimage. 2021 Aug 1;236:118033. doi: 10.1016/j.neuroimage.2021.118033. Epub 2021 Apr 6.
3
Large-scale neural network computations and multivariate representations during approach-avoidance conflict decision-making.
Neuroimage. 2022 Dec 1;264:119709. doi: 10.1016/j.neuroimage.2022.119709. Epub 2022 Oct 22.
4
A neural network model of when to retrieve and encode episodic memories.
Elife. 2022 Feb 10;11:e74445. doi: 10.7554/eLife.74445.
5
Neural Differentiation of Incorrectly Predicted Memories.
J Neurosci. 2017 Feb 22;37(8):2022-2031. doi: 10.1523/JNEUROSCI.3272-16.2017. Epub 2017 Jan 23.
7
Memory Reactivation during Learning Simultaneously Promotes Dentate Gyrus/CA Pattern Differentiation and CA Memory Integration.
J Neurosci. 2021 Jan 27;41(4):726-738. doi: 10.1523/JNEUROSCI.0394-20.2020. Epub 2020 Nov 25.
9
Contributions of medial temporal lobe and striatal memory systems to learning and retrieving overlapping spatial memories.
Cereb Cortex. 2014 Jul;24(7):1906-22. doi: 10.1093/cercor/bht041. Epub 2013 Feb 28.
10
Targeted Memory Reactivation during Sleep Elicits Neural Signals Related to Learning Content.
J Neurosci. 2019 Aug 21;39(34):6728-6736. doi: 10.1523/JNEUROSCI.2798-18.2019. Epub 2019 Jun 24.

本文引用的文献

2
Diminished prospective mental representations of reward mediate reward learning strategies among youth with internalizing symptoms.
Psychol Med. 2023 Oct;53(14):6910-6920. doi: 10.1017/S0033291723000478. Epub 2023 Mar 7.
3
Large-scale neural network computations and multivariate representations during approach-avoidance conflict decision-making.
Neuroimage. 2022 Dec 1;264:119709. doi: 10.1016/j.neuroimage.2022.119709. Epub 2022 Oct 22.
4
Patterns of retrieval-related cortico-striatal connectivity are stable across the adult lifespan.
Cereb Cortex. 2023 Apr 4;33(8):4542-4552. doi: 10.1093/cercor/bhac360.
6
Flexible rerouting of hippocampal replay sequences around changing barriers in the absence of global place field remapping.
Neuron. 2022 May 4;110(9):1547-1558.e8. doi: 10.1016/j.neuron.2022.02.002. Epub 2022 Feb 17.
8
Neural reinstatement reveals divided organization of fear and extinction memories in the human brain.
Curr Biol. 2022 Jan 24;32(2):304-314.e5. doi: 10.1016/j.cub.2021.11.004. Epub 2021 Nov 22.
9
Hippocampal replay reflects specific past experiences rather than a plan for subsequent choice.
Neuron. 2021 Oct 6;109(19):3149-3163.e6. doi: 10.1016/j.neuron.2021.07.029. Epub 2021 Aug 26.
10
Salience and default-mode network connectivity during threat and safety processing in older adults.
Hum Brain Mapp. 2021 Jan;42(1):14-23. doi: 10.1002/hbm.25199. Epub 2020 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验