Li Hongming, Fan Yong
Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
Neuroimage. 2019 Nov 15;202:116059. doi: 10.1016/j.neuroimage.2019.116059. Epub 2019 Jul 27.
Decoding brain functional states underlying cognitive processes from functional MRI (fMRI) data using multivariate pattern analysis (MVPA) techniques has achieved promising performance for characterizing brain activation patterns and providing neurofeedback signals. However, it remains challenging to decode subtly distinct brain states for individual fMRI data points due to varying temporal durations and dependency among different cognitive processes. In this study, we develop a deep learning based framework for brain decoding by leveraging recent advances in intrinsic functional network modeling and sequence modeling using long short-term memory (LSTM) recurrent neural networks (RNNs). Particularly, subject-specific intrinsic functional networks (FNs) are computed from resting-state fMRI data and are used to characterize functional signals of task fMRI data with a compact representation for building brain decoding models, and LSTM RNNs are adopted to learn brain decoding mappings between functional profiles and brain states. Validation results on fMRI data from the HCP dataset have demonstrated that brain decoding models built on training data using the proposed method could learn discriminative latent feature representations and effectively distinguish subtly distinct working memory tasks of different subjects with significantly higher accuracy than conventional decoding models. Informative FNs of the brain decoding models identified as brain activation patterns of working memory tasks were largely consistent with the literature. The method also obtained promising decoding performance on motor and social cognition tasks. Our results suggest that LSTM RNNs in conjunction with FNs could build interpretable, highly accurate brain decoding models.
使用多变量模式分析(MVPA)技术从功能磁共振成像(fMRI)数据中解码认知过程背后的大脑功能状态,在表征大脑激活模式和提供神经反馈信号方面已经取得了有前景的成果。然而,由于不同认知过程的时间持续时间和依赖性各不相同,对单个fMRI数据点的细微不同大脑状态进行解码仍然具有挑战性。在本研究中,我们利用内在功能网络建模和使用长短期记忆(LSTM)循环神经网络(RNN)的序列建模的最新进展,开发了一个基于深度学习的大脑解码框架。具体而言,从静息态fMRI数据中计算出特定于个体的内在功能网络(FN),并用于以紧凑表示来表征任务fMRI数据的功能信号,以构建大脑解码模型,并且采用LSTM RNN来学习功能特征和大脑状态之间的大脑解码映射。对来自人类连接组计划(HCP)数据集的fMRI数据的验证结果表明,使用所提出的方法在训练数据上构建的大脑解码模型可以学习有区分性的潜在特征表示,并能以比传统解码模型显著更高的准确率有效区分不同受试者的细微不同的工作记忆任务。被识别为工作记忆任务大脑激活模式的大脑解码模型的信息性FN在很大程度上与文献一致。该方法在运动和社会认知任务上也获得了有前景的解码性能。我们的结果表明,LSTM RNN与FN相结合可以构建可解释的、高度准确的大脑解码模型。