Suppr超能文献

利用内在功能网络和长短期记忆循环神经网络,从功能磁共振成像中对细微不同的脑状态进行可解释的、高度准确的脑解码。

Interpretable, highly accurate brain decoding of subtly distinct brain states from functional MRI using intrinsic functional networks and long short-term memory recurrent neural networks.

作者信息

Li Hongming, Fan Yong

机构信息

Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

Center for Biomedical Image Computing and Analytics, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.

出版信息

Neuroimage. 2019 Nov 15;202:116059. doi: 10.1016/j.neuroimage.2019.116059. Epub 2019 Jul 27.

Abstract

Decoding brain functional states underlying cognitive processes from functional MRI (fMRI) data using multivariate pattern analysis (MVPA) techniques has achieved promising performance for characterizing brain activation patterns and providing neurofeedback signals. However, it remains challenging to decode subtly distinct brain states for individual fMRI data points due to varying temporal durations and dependency among different cognitive processes. In this study, we develop a deep learning based framework for brain decoding by leveraging recent advances in intrinsic functional network modeling and sequence modeling using long short-term memory (LSTM) recurrent neural networks (RNNs). Particularly, subject-specific intrinsic functional networks (FNs) are computed from resting-state fMRI data and are used to characterize functional signals of task fMRI data with a compact representation for building brain decoding models, and LSTM RNNs are adopted to learn brain decoding mappings between functional profiles and brain states. Validation results on fMRI data from the HCP dataset have demonstrated that brain decoding models built on training data using the proposed method could learn discriminative latent feature representations and effectively distinguish subtly distinct working memory tasks of different subjects with significantly higher accuracy than conventional decoding models. Informative FNs of the brain decoding models identified as brain activation patterns of working memory tasks were largely consistent with the literature. The method also obtained promising decoding performance on motor and social cognition tasks. Our results suggest that LSTM RNNs in conjunction with FNs could build interpretable, highly accurate brain decoding models.

摘要

使用多变量模式分析(MVPA)技术从功能磁共振成像(fMRI)数据中解码认知过程背后的大脑功能状态,在表征大脑激活模式和提供神经反馈信号方面已经取得了有前景的成果。然而,由于不同认知过程的时间持续时间和依赖性各不相同,对单个fMRI数据点的细微不同大脑状态进行解码仍然具有挑战性。在本研究中,我们利用内在功能网络建模和使用长短期记忆(LSTM)循环神经网络(RNN)的序列建模的最新进展,开发了一个基于深度学习的大脑解码框架。具体而言,从静息态fMRI数据中计算出特定于个体的内在功能网络(FN),并用于以紧凑表示来表征任务fMRI数据的功能信号,以构建大脑解码模型,并且采用LSTM RNN来学习功能特征和大脑状态之间的大脑解码映射。对来自人类连接组计划(HCP)数据集的fMRI数据的验证结果表明,使用所提出的方法在训练数据上构建的大脑解码模型可以学习有区分性的潜在特征表示,并能以比传统解码模型显著更高的准确率有效区分不同受试者的细微不同的工作记忆任务。被识别为工作记忆任务大脑激活模式的大脑解码模型的信息性FN在很大程度上与文献一致。该方法在运动和社会认知任务上也获得了有前景的解码性能。我们的结果表明,LSTM RNN与FN相结合可以构建可解释的、高度准确的大脑解码模型。

相似文献

2
Brain Decoding from Functional MRI Using Long Short-Term Memory Recurrent Neural Networks.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:320-328. doi: 10.1007/978-3-030-00931-1_37. Epub 2018 Sep 13.
3
Task sub-type states decoding via group deep bidirectional recurrent neural network.
Med Image Anal. 2024 May;94:103136. doi: 10.1016/j.media.2024.103136. Epub 2024 Mar 6.
4
Long short-term memory-based neural decoding of object categories evoked by natural images.
Hum Brain Mapp. 2020 Oct 15;41(15):4442-4453. doi: 10.1002/hbm.25136. Epub 2020 Jul 10.
5
Decoding and mapping task states of the human brain via deep learning.
Hum Brain Mapp. 2020 Apr 15;41(6):1505-1519. doi: 10.1002/hbm.24891. Epub 2019 Dec 9.
6
Robust Brain State Decoding using Bidirectional Long Short Term Memory Networks in functional MRI.
Proc Indian Conf Comput Vis Graphics Image Proc. 2021 Dec;2021. doi: 10.1145/3490035.3490269. Epub 2021 Dec 19.
7
Decoding Brain States From fMRI Signals by Using Unsupervised Domain Adaptation.
IEEE J Biomed Health Inform. 2020 Jun;24(6):1677-1685. doi: 10.1109/JBHI.2019.2940695. Epub 2019 Sep 11.
8
Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset.
Neuroimage. 2023 Dec 1;283:120395. doi: 10.1016/j.neuroimage.2023.120395. Epub 2023 Oct 12.
9
Automatic Recognition of fMRI-Derived Functional Networks Using 3-D Convolutional Neural Networks.
IEEE Trans Biomed Eng. 2018 Sep;65(9):1975-1984. doi: 10.1109/TBME.2017.2715281. Epub 2017 Jun 15.
10
From long-term to short-term: Distinct neural networks underlying semantic knowledge and its recruitment in working memory.
Neuropsychologia. 2024 Sep 9;202:108949. doi: 10.1016/j.neuropsychologia.2024.108949. Epub 2024 Jul 5.

引用本文的文献

1
Natural sounds can be reconstructed from human neuroimaging data using deep neural network representation.
PLoS Biol. 2025 Jul 23;23(7):e3003293. doi: 10.1371/journal.pbio.3003293. eCollection 2025 Jul.
2
SAD: semi-supervised automatic detection of BOLD activations in high temporal resolution fMRI data.
MAGMA. 2024 Dec;37(6):1031-1046. doi: 10.1007/s10334-024-01197-0. Epub 2024 Aug 29.
4
Design and evaluation of a global workspace agent embodied in a realistic multimodal environment.
Front Comput Neurosci. 2024 Jun 14;18:1352685. doi: 10.3389/fncom.2024.1352685. eCollection 2024.
5
Net: A toolbox for personalized functional networks modeling.
bioRxiv. 2024 Apr 29:2024.04.26.591367. doi: 10.1101/2024.04.26.591367.
7
Self-supervised pretraining improves the performance of classification of task functional magnetic resonance imaging.
Front Neurosci. 2023 Jun 26;17:1199312. doi: 10.3389/fnins.2023.1199312. eCollection 2023.
8
Sleep fMRI with simultaneous electrophysiology at 9.4 T in male mice.
Nat Commun. 2023 Mar 24;14(1):1651. doi: 10.1038/s41467-023-37352-9.
9
Explainable fMRI-based brain decoding via spatial temporal-pyramid graph convolutional network.
Hum Brain Mapp. 2023 May;44(7):2921-2935. doi: 10.1002/hbm.26255. Epub 2023 Feb 28.
10
Decoding task specific and task general functional architectures of the brain.
Hum Brain Mapp. 2022 Jun 15;43(9):2801-2816. doi: 10.1002/hbm.25817. Epub 2022 Feb 27.

本文引用的文献

1
Machine Learning for Neural Decoding.
eNeuro. 2020 Aug 31;7(4). doi: 10.1523/ENEURO.0506-19.2020. Print 2020 Jul/Aug.
2
Identification of Multi-scale Hierarchical Brain Functional Networks Using Deep Matrix Factorization.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:223-231. doi: 10.1007/978-3-030-00931-1_26. Epub 2018 Sep 13.
3
Brain Decoding from Functional MRI Using Long Short-Term Memory Recurrent Neural Networks.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:320-328. doi: 10.1007/978-3-030-00931-1_37. Epub 2018 Sep 13.
4
Identification of Temporal Transition of Functional States Using Recurrent Neural Networks from Functional MRI.
Med Image Comput Comput Assist Interv. 2018 Sep;11072:232-239. doi: 10.1007/978-3-030-00931-1_27. Epub 2018 Sep 13.
5
Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks.
Front Neurosci. 2018 Sep 20;12:600. doi: 10.3389/fnins.2018.00600. eCollection 2018.
6
Meeting brain-computer interface user performance expectations using a deep neural network decoding framework.
Nat Med. 2018 Nov;24(11):1669-1676. doi: 10.1038/s41591-018-0171-y. Epub 2018 Sep 24.
7
Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks.
Mach Learn Med Imaging. 2017 Sep;10541:362-370. doi: 10.1007/978-3-319-67389-9_42. Epub 2017 Sep 7.
8
Advances in fMRI Real-Time Neurofeedback.
Trends Cogn Sci. 2017 Dec;21(12):997-1010. doi: 10.1016/j.tics.2017.09.010. Epub 2017 Oct 12.
9
Decoding fMRI activity in the time domain improves classification performance.
Neuroimage. 2018 Oct 15;180(Pt A):203-210. doi: 10.1016/j.neuroimage.2017.08.018. Epub 2017 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验