Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
AI Center, Korea University Anam Hospital, Korea University College of Medicine, 73, Goryeodae-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Eur Radiol. 2024 Sep;34(9):6182-6192. doi: 10.1007/s00330-023-10452-2. Epub 2024 Feb 1.
This study aims to develop computer-aided detection (CAD) for colorectal cancer (CRC) using abdominal CT based on a deep convolutional neural network.
This retrospective study included consecutive patients with colorectal adenocarcinoma who underwent abdominal CT before CRC resection surgery (training set = 379, test set = 103). We customized the 3D U-Net of nnU-Net (CUNET) for CRC detection, which was trained with fivefold cross-validation using annotated CT images. CUNET was validated using datasets covering various clinical situations and institutions: an internal test set (n = 103), internal patients with CRC first determined by CT (n = 54) and asymptomatic CRC (n = 51), and an external validation set from two institutions (n = 60). During each validation, data from the healthy population were added (internal = 60; external = 130). CUNET was compared with other deep CNNs: residual U-Net and EfficientDet. The CAD performances were evaluated using per-CRC sensitivity (true positive/all CRCs), free-response receiver operating characteristic (FROC), and jackknife alternative FROC (JAFROC) curves.
CUNET showed a higher maximum per-CRC sensitivity than residual U-Net and EfficientDet (internal test set 91.3% vs. 61.2%, and 64.1%). The per-CRC sensitivity of CUNET at false-positive rates of 3.0 was as follows: internal CRC determined by CT, 89.3%; internal asymptomatic CRC, 87.3%; and external validation, 89.6%. CUNET detected 69.2% (9/13) of CRCs missed by radiologists and 89.7% (252/281) of CRCs from all validation sets.
CUNET can detect CRC on abdominal CT in patients with various clinical situations and from external institutions.
• Customized 3D U-Net of nnU-Net (CUNET) can be applied to the opportunistic detection of colorectal cancer (CRC) in abdominal CT, helping radiologists detect unexpected CRC. • CUNET showed the best performance at false-positive rates ≥ 3.0, and 30.1% of false-positives were in the colorectum. CUNET detected 69.2% (9/13) of CRCs missed by radiologists and 87.3% (48/55) of asymptomatic CRCs. • CUNET detected CRCs in multiple validation sets composed of varying clinical situations and from different institutions, and CUNET detected 89.7% (252/281) of CRCs from all validation sets.
本研究旨在开发基于深度卷积神经网络的腹部 CT 结直肠癌(CRC)计算机辅助检测(CAD)。
这是一项回顾性研究,纳入了在 CRC 切除术前接受腹部 CT 检查的连续结直肠腺癌患者(训练集=379 例,测试集=103 例)。我们针对 CRC 检测定制了 nnU-Net 的 3D U-Net(CUNET),使用带注释 CT 图像进行五重交叉验证进行训练。CUNET 采用涵盖各种临床情况和机构的数据集进行验证:内部测试集(n=103)、首次通过 CT 确定的 CRC 内部患者(n=54)和无症状 CRC(n=51),以及来自两个机构的外部验证集(n=60)。在每次验证中,均添加了健康人群的数据(内部=60;外部=130)。将 CUNET 与其他深度 CNN(残余 U-Net 和 EfficientDet)进行比较。使用每例 CRC 的灵敏度(真阳性/所有 CRC)、自由响应接受者操作特征(FROC)和刀叉替代 FROC(JAFROC)曲线评估 CAD 性能。
CUNET 的最大每例 CRC 灵敏度高于残余 U-Net 和 EfficientDet(内部测试集为 91.3% vs. 61.2%和 64.1%)。CUNET 在假阳性率为 3.0 时的每例 CRC 灵敏度如下:通过 CT 确定的内部 CRC,89.3%;内部无症状 CRC,87.3%;外部验证,89.6%。CUNET 检测到了放射科医生遗漏的 69.2%(9/13)的 CRC 和所有验证集的 89.7%(252/281)的 CRC。
CUNET 可在具有各种临床情况和来自外部机构的患者的腹部 CT 上检测 CRC。
定制的 nnU-Net 的 3D U-Net(CUNET)可应用于腹部 CT 中结直肠癌的机会性检测,有助于放射科医生发现意外的 CRC。
CUNET 在假阳性率≥3.0 时表现最佳,30.1%的假阳性位于结直肠内。CUNET 检测到放射科医生遗漏的 69.2%(9/13)的 CRC 和 87.3%(48/55)的无症状 CRC。
CUNET 检测了多个由不同临床情况和不同机构组成的验证集的 CRC,并且 CUNET 检测到了所有验证集的 89.7%(252/281)的 CRC。