Department of Radiology, AP-HP.Sorbonne, Saint Antoine Hospital, 184 Rue du Faubourg Saint-Antoine, 75012, Paris, France.
UMR 7371, Université Sorbonne, CNRS, Inserm U114615, rue de l'École de Médecine, 75006, Paris, France.
Eur Radiol. 2024 Sep;34(9):5842-5853. doi: 10.1007/s00330-024-10657-z. Epub 2024 Feb 22.
Automated evaluation of abdominal computed tomography (CT) scans should help radiologists manage their massive workloads, thereby leading to earlier diagnoses and better patient outcomes. Our objective was to develop a machine-learning model capable of reliably identifying suspected bowel obstruction (BO) on abdominal CT.
The internal dataset comprised 1345 abdominal CTs obtained in 2015-2022 from 1273 patients with suspected BO; among them, 670 were annotated as BO yes/no by an experienced abdominal radiologist. The external dataset consisted of 88 radiologist-annotated CTs. We developed a full preprocessing pipeline for abdominal CT comprising a model to locate the abdominal-pelvic region and another model to crop the 3D scan around the body. We built, trained, and tested several neural-network architectures for the binary classification (BO, yes/no) of each CT. F1 and balanced accuracy scores were computed to assess model performance.
The mixed convolutional network pretrained on a Kinetics 400 dataset achieved the best results: with the internal dataset, the F1 score was 0.92, balanced accuracy 0.86, and sensitivity 0.93; with the external dataset, the corresponding values were 0.89, 0.89, and 0.89. When calibrated on sensitivity, this model produced 1.00 sensitivity, 0.84 specificity, and an F1 score of 0.88 with the internal dataset; corresponding values were 0.98, 0.76, and 0.87 with the external dataset.
The 3D mixed convolutional neural network developed here shows great potential for the automated binary classification (BO yes/no) of abdominal CT scans from patients with suspected BO.
The 3D mixed CNN automates bowel obstruction classification, potentially automating patient selection and CT prioritization, leading to an enhanced radiologist workflow.
• Bowel obstruction's rising incidence strains radiologists. AI can aid urgent CT readings. • Employed 1345 CT scans, neural networks for bowel obstruction detection, achieving high accuracy and sensitivity on external testing. • 3D mixed CNN automates CT reading prioritization effectively and speeds up bowel obstruction diagnosis.
自动化评估腹部计算机断层扫描(CT)应有助于放射科医生管理其大量的工作量,从而实现更早的诊断和更好的患者预后。我们的目标是开发一种能够可靠识别腹部 CT 疑似肠梗阻(BO)的机器学习模型。
内部数据集包含 2015 年至 2022 年期间从 1273 名疑似 BO 患者中获得的 1345 例腹部 CT;其中,670 例由一名有经验的腹部放射科医生标注为 BO 是/否。外部数据集由 88 例放射科医生标注的 CT 组成。我们为腹部 CT 开发了一个完整的预处理管道,包括一个定位腹部-盆腔区域的模型和另一个围绕身体裁剪 3D 扫描的模型。我们为每个 CT 的二分类(BO,是/否)构建、训练和测试了几种神经网络架构。计算了 F1 和平衡准确性评分以评估模型性能。
在 Kinetics 400 数据集上预训练的混合卷积网络取得了最佳结果:在内部数据集上,F1 得分为 0.92,平衡准确性为 0.86,敏感性为 0.93;在外部数据集上,相应的值分别为 0.89、0.89 和 0.89。当根据敏感性进行校准时,该模型在内部数据集中产生了 1.00 的敏感性、0.84 的特异性和 0.88 的 F1 评分;在外部数据集中,相应的值分别为 0.98、0.76 和 0.87。
这里开发的 3D 混合卷积神经网络在自动对疑似 BO 患者的腹部 CT 扫描进行二进制分类(BO 是/否)方面具有巨大潜力。
3D 混合 CNN 可自动对肠梗阻进行分类,有可能实现对患者选择和 CT 优先级的自动化,从而提高放射科医生的工作流程。
肠梗阻的发病率不断上升,给放射科医生带来压力。人工智能可以辅助紧急 CT 阅读。
研究使用了 1345 例 CT 扫描和用于检测肠梗阻的神经网络,在外部测试中取得了较高的准确性和敏感性。
3D 混合 CNN 可有效实现 CT 阅读优先级自动化,并加速肠梗阻诊断。