Zhang Yinghao, Gui Haiyan, Yang Ningdi, Hu Yue
School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China.
The Fourth Hospital of Harbin, Harbin, China.
Magn Reson Imaging. 2025 May;118:110337. doi: 10.1016/j.mri.2025.110337. Epub 2025 Jan 30.
Joint low-rank and sparse unrolling networks have shown superior performance in dynamic MRI reconstruction. However, existing works mainly utilized matrix low-rank priors, neglecting the tensor characteristics of dynamic MRI images, and only a global threshold is applied for the sparse constraint to the multi-channel data, limiting the flexibility of the network. Additionally, most of them have inherently complex network structure, with intricate interactions among variables. In this paper, we propose a novel deep unrolling network, JotlasNet, for dynamic MRI reconstruction by jointly utilizing tensor low-rank and attention-based sparse priors. Specifically, we utilize tensor low-rank prior to exploit the structural correlations in high-dimensional data. Convolutional neural networks are used to adaptively learn the low-rank and sparse transform domains. A novel attention-based soft thresholding operator is proposed to assign a unique learnable threshold to each channel of the data in the CNN-learned sparse domain. The network is unrolled from the elaborately designed composite splitting algorithm and thus features a simple yet efficient parallel structure. Extensive experiments on two datasets (OCMR, CMRxRecon) demonstrate the superior performance of JotlasNet in dynamic MRI reconstruction.
联合低秩和稀疏展开网络在动态磁共振成像(MRI)重建中表现出卓越的性能。然而,现有工作主要利用矩阵低秩先验,忽略了动态MRI图像的张量特性,并且仅对多通道数据应用全局阈值进行稀疏约束,限制了网络的灵活性。此外,它们中的大多数具有固有的复杂网络结构,变量之间存在复杂的相互作用。在本文中,我们提出了一种新颖的深度展开网络JotlasNet,用于通过联合利用张量低秩和基于注意力的稀疏先验来进行动态MRI重建。具体而言,我们利用张量低秩先验来挖掘高维数据中的结构相关性。使用卷积神经网络自适应地学习低秩和稀疏变换域。提出了一种新颖的基于注意力的软阈值算子,为CNN学习的稀疏域中的数据的每个通道分配一个唯一的可学习阈值。该网络从精心设计的复合分裂算法展开,因此具有简单而高效的并行结构。在两个数据集(OCMR,CMRxRecon)上进行的大量实验证明了JotlasNet在动态MRI重建中的卓越性能。